• Search Menu
  • Editor's Choice
  • Author Guidelines
  • Submission Site
  • Open Access
  • About Journal of Cybersecurity
  • Editorial Board
  • Advertising and Corporate Services
  • Journals Career Network
  • Self-Archiving Policy
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Editors-in-Chief

Tyler Moore

About the journal

Journal of Cybersecurity publishes accessible articles describing original research in the inherently interdisciplinary world of computer, systems, and information security …

Latest articles

Cybersecurity Month

Call for Papers

Journal of Cybersecurity is soliciting papers for a special collection on the philosophy of information security. This collection will explore research at the intersection of philosophy, information security, and philosophy of science.

Find out more

CYBERS High Impact 480x270.png

High-Impact Research Collection

Explore a collection of freely available high-impact research from 2020 and 2021 published in the Journal of Cybersecurity .

Browse the collection here

submit

Submit your paper

Join the conversation moving the science of security forward. Visit our Instructions to Authors for more information about how to submit your manuscript.

Read and publish

Read and Publish deals

Authors interested in publishing in Journal of Cybersecurity may be able to publish their paper Open Access using funds available through their institution’s agreement with OUP.

Find out if your institution is participating

Related Titles

cybersecurityandcyberwar

Affiliations

  • Online ISSN 2057-2093
  • Print ISSN 2057-2085
  • Copyright © 2023 Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2023 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Cyber Security Research Papers

Master's degree candidates at SANS.edu conduct research that is relevant, has real world impact, and often provides cutting-edge advancements to the field of cybersecurity, all under the guidance and review of our world-class instructors.

  • Cloud Security
  • Cyber Defense
  • Cybersecurity and IT Essentials
  • Cybersecurity Insights
  • Digital Forensics, Incident Response & Threat Hunting
  • Industrial Control Systems Security
  • Offensive Operations, Pen Testing, and Red Teaming
  • Security Awareness
  • Security Management, Legal, and Audit
  • 10 per page
  • 50 per page
  • 100 per page

Cyber risk and cybersecurity: a systematic review of data availability

  • Open access
  • Published: 17 February 2022
  • volume  47 ,  pages 698–736 ( 2022 )

You have full access to this open access article

  • Frank Cremer 1 ,
  • Barry Sheehan   ORCID: orcid.org/0000-0003-4592-7558 1 ,
  • Michael Fortmann 2 ,
  • Arash N. Kia 1 ,
  • Martin Mullins 1 ,
  • Finbarr Murphy 1 &
  • Stefan Materne 2  

45k Accesses

38 Citations

33 Altmetric

Explore all metrics

Cite this article

Cybercrime is estimated to have cost the global economy just under USD 1 trillion in 2020, indicating an increase of more than 50% since 2018. With the average cyber insurance claim rising from USD 145,000 in 2019 to USD 359,000 in 2020, there is a growing necessity for better cyber information sources, standardised databases, mandatory reporting and public awareness. This research analyses the extant academic and industry literature on cybersecurity and cyber risk management with a particular focus on data availability. From a preliminary search resulting in 5219 cyber peer-reviewed studies, the application of the systematic methodology resulted in 79 unique datasets. We posit that the lack of available data on cyber risk poses a serious problem for stakeholders seeking to tackle this issue. In particular, we identify a lacuna in open databases that undermine collective endeavours to better manage this set of risks. The resulting data evaluation and categorisation will support cybersecurity researchers and the insurance industry in their efforts to comprehend, metricise and manage cyber risks.

Avoid common mistakes on your manuscript.

Introduction

Globalisation, digitalisation and smart technologies have escalated the propensity and severity of cybercrime. Whilst it is an emerging field of research and industry, the importance of robust cybersecurity defence systems has been highlighted at the corporate, national and supranational levels. The impacts of inadequate cybersecurity are estimated to have cost the global economy USD 945 billion in 2020 (Maleks Smith et al. 2020 ). Cyber vulnerabilities pose significant corporate risks, including business interruption, breach of privacy and financial losses (Sheehan et al. 2019 ). Despite the increasing relevance for the international economy, the availability of data on cyber risks remains limited. The reasons for this are many. Firstly, it is an emerging and evolving risk; therefore, historical data sources are limited (Biener et al. 2015 ). It could also be due to the fact that, in general, institutions that have been hacked do not publish the incidents (Eling and Schnell 2016 ). The lack of data poses challenges for many areas, such as research, risk management and cybersecurity (Falco et al. 2019 ). The importance of this topic is demonstrated by the announcement of the European Council in April 2021 that a centre of excellence for cybersecurity will be established to pool investments in research, technology and industrial development. The goal of this centre is to increase the security of the internet and other critical network and information systems (European Council 2021 ).

This research takes a risk management perspective, focusing on cyber risk and considering the role of cybersecurity and cyber insurance in risk mitigation and risk transfer. The study reviews the existing literature and open data sources related to cybersecurity and cyber risk. This is the first systematic review of data availability in the general context of cyber risk and cybersecurity. By identifying and critically analysing the available datasets, this paper supports the research community by aggregating, summarising and categorising all available open datasets. In addition, further information on datasets is attached to provide deeper insights and support stakeholders engaged in cyber risk control and cybersecurity. Finally, this research paper highlights the need for open access to cyber-specific data, without price or permission barriers.

The identified open data can support cyber insurers in their efforts on sustainable product development. To date, traditional risk assessment methods have been untenable for insurance companies due to the absence of historical claims data (Sheehan et al. 2021 ). These high levels of uncertainty mean that cyber insurers are more inclined to overprice cyber risk cover (Kshetri 2018 ). Combining external data with insurance portfolio data therefore seems to be essential to improve the evaluation of the risk and thus lead to risk-adjusted pricing (Bessy-Roland et al. 2021 ). This argument is also supported by the fact that some re/insurers reported that they are working to improve their cyber pricing models (e.g. by creating or purchasing databases from external providers) (EIOPA 2018 ). Figure  1 provides an overview of pricing tools and factors considered in the estimation of cyber insurance based on the findings of EIOPA ( 2018 ) and the research of Romanosky et al. ( 2019 ). The term cyber risk refers to all cyber risks and their potential impact.

figure 1

An overview of the current cyber insurance informational and methodological landscape, adapted from EIOPA ( 2018 ) and Romanosky et al. ( 2019 )

Besides the advantage of risk-adjusted pricing, the availability of open datasets helps companies benchmark their internal cyber posture and cybersecurity measures. The research can also help to improve risk awareness and corporate behaviour. Many companies still underestimate their cyber risk (Leong and Chen 2020 ). For policymakers, this research offers starting points for a comprehensive recording of cyber risks. Although in many countries, companies are obliged to report data breaches to the respective supervisory authority, this information is usually not accessible to the research community. Furthermore, the economic impact of these breaches is usually unclear.

As well as the cyber risk management community, this research also supports cybersecurity stakeholders. Researchers are provided with an up-to-date, peer-reviewed literature of available datasets showing where these datasets have been used. For example, this includes datasets that have been used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems. This reduces a time-consuming search for suitable datasets and ensures a comprehensive review of those available. Through the dataset descriptions, researchers and industry stakeholders can compare and select the most suitable datasets for their purposes. In addition, it is possible to combine the datasets from one source in the context of cybersecurity or cyber risk. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks.

Cyber risks are defined as “operational risks to information and technology assets that have consequences affecting the confidentiality, availability, and/or integrity of information or information systems” (Cebula et al. 2014 ). Prominent cyber risk events include data breaches and cyberattacks (Agrafiotis et al. 2018 ). The increasing exposure and potential impact of cyber risk have been highlighted in recent industry reports (e.g. Allianz 2021 ; World Economic Forum 2020 ). Cyberattacks on critical infrastructures are ranked 5th in the World Economic Forum's Global Risk Report. Ransomware, malware and distributed denial-of-service (DDoS) are examples of the evolving modes of a cyberattack. One example is the ransomware attack on the Colonial Pipeline, which shut down the 5500 mile pipeline system that delivers 2.5 million barrels of fuel per day and critical liquid fuel infrastructure from oil refineries to states along the U.S. East Coast (Brower and McCormick 2021 ). These and other cyber incidents have led the U.S. to strengthen its cybersecurity and introduce, among other things, a public body to analyse major cyber incidents and make recommendations to prevent a recurrence (Murphey 2021a ). Another example of the scope of cyberattacks is the ransomware NotPetya in 2017. The damage amounted to USD 10 billion, as the ransomware exploited a vulnerability in the windows system, allowing it to spread independently worldwide in the network (GAO 2021 ). In the same year, the ransomware WannaCry was launched by cybercriminals. The cyberattack on Windows software took user data hostage in exchange for Bitcoin cryptocurrency (Smart 2018 ). The victims included the National Health Service in Great Britain. As a result, ambulances were redirected to other hospitals because of information technology (IT) systems failing, leaving people in need of urgent assistance waiting. It has been estimated that 19,000 cancelled treatment appointments resulted from losses of GBP 92 million (Field 2018 ). Throughout the COVID-19 pandemic, ransomware attacks increased significantly, as working from home arrangements increased vulnerability (Murphey 2021b ).

Besides cyberattacks, data breaches can also cause high costs. Under the General Data Protection Regulation (GDPR), companies are obliged to protect personal data and safeguard the data protection rights of all individuals in the EU area. The GDPR allows data protection authorities in each country to impose sanctions and fines on organisations they find in breach. “For data breaches, the maximum fine can be €20 million or 4% of global turnover, whichever is higher” (GDPR.EU 2021 ). Data breaches often involve a large amount of sensitive data that has been accessed, unauthorised, by external parties, and are therefore considered important for information security due to their far-reaching impact (Goode et al. 2017 ). A data breach is defined as a “security incident in which sensitive, protected, or confidential data are copied, transmitted, viewed, stolen, or used by an unauthorized individual” (Freeha et al. 2021 ). Depending on the amount of data, the extent of the damage caused by a data breach can be significant, with the average cost being USD 392 million Footnote 1 (IBM Security 2020 ).

This research paper reviews the existing literature and open data sources related to cybersecurity and cyber risk, focusing on the datasets used to improve academic understanding and advance the current state-of-the-art in cybersecurity. Furthermore, important information about the available datasets is presented (e.g. use cases), and a plea is made for open data and the standardisation of cyber risk data for academic comparability and replication. The remainder of the paper is structured as follows. The next section describes the related work regarding cybersecurity and cyber risks. The third section outlines the review method used in this work and the process. The fourth section details the results of the identified literature. Further discussion is presented in the penultimate section and the final section concludes.

Related work

Due to the significance of cyber risks, several literature reviews have been conducted in this field. Eling ( 2020 ) reviewed the existing academic literature on the topic of cyber risk and cyber insurance from an economic perspective. A total of 217 papers with the term ‘cyber risk’ were identified and classified in different categories. As a result, open research questions are identified, showing that research on cyber risks is still in its infancy because of their dynamic and emerging nature. Furthermore, the author highlights that particular focus should be placed on the exchange of information between public and private actors. An improved information flow could help to measure the risk more accurately and thus make cyber risks more insurable and help risk managers to determine the right level of cyber risk for their company. In the context of cyber insurance data, Romanosky et al. ( 2019 ) analysed the underwriting process for cyber insurance and revealed how cyber insurers understand and assess cyber risks. For this research, they examined 235 American cyber insurance policies that were publicly available and looked at three components (coverage, application questionnaires and pricing). The authors state in their findings that many of the insurers used very simple, flat-rate pricing (based on a single calculation of expected loss), while others used more parameters such as the asset value of the company (or company revenue) or standard insurance metrics (e.g. deductible, limits), and the industry in the calculation. This is in keeping with Eling ( 2020 ), who states that an increased amount of data could help to make cyber risk more accurately measured and thus more insurable. Similar research on cyber insurance and data was conducted by Nurse et al. ( 2020 ). The authors examined cyber insurance practitioners' perceptions and the challenges they face in collecting and using data. In addition, gaps were identified during the research where further data is needed. The authors concluded that cyber insurance is still in its infancy, and there are still several unanswered questions (for example, cyber valuation, risk calculation and recovery). They also pointed out that a better understanding of data collection and use in cyber insurance would be invaluable for future research and practice. Bessy-Roland et al. ( 2021 ) come to a similar conclusion. They proposed a multivariate Hawkes framework to model and predict the frequency of cyberattacks. They used a public dataset with characteristics of data breaches affecting the U.S. industry. In the conclusion, the authors make the argument that an insurer has a better knowledge of cyber losses, but that it is based on a small dataset and therefore combination with external data sources seems essential to improve the assessment of cyber risks.

Several systematic reviews have been published in the area of cybersecurity (Kruse et al. 2017 ; Lee et al. 2020 ; Loukas et al. 2013 ; Ulven and Wangen 2021 ). In these papers, the authors concentrated on a specific area or sector in the context of cybersecurity. This paper adds to this extant literature by focusing on data availability and its importance to risk management and insurance stakeholders. With a priority on healthcare and cybersecurity, Kruse et al. ( 2017 ) conducted a systematic literature review. The authors identified 472 articles with the keywords ‘cybersecurity and healthcare’ or ‘ransomware’ in the databases Cumulative Index of Nursing and Allied Health Literature, PubMed and Proquest. Articles were eligible for this review if they satisfied three criteria: (1) they were published between 2006 and 2016, (2) the full-text version of the article was available, and (3) the publication is a peer-reviewed or scholarly journal. The authors found that technological development and federal policies (in the U.S.) are the main factors exposing the health sector to cyber risks. Loukas et al. ( 2013 ) conducted a review with a focus on cyber risks and cybersecurity in emergency management. The authors provided an overview of cyber risks in communication, sensor, information management and vehicle technologies used in emergency management and showed areas for which there is still no solution in the literature. Similarly, Ulven and Wangen ( 2021 ) reviewed the literature on cybersecurity risks in higher education institutions. For the literature review, the authors used the keywords ‘cyber’, ‘information threats’ or ‘vulnerability’ in connection with the terms ‘higher education, ‘university’ or ‘academia’. A similar literature review with a focus on Internet of Things (IoT) cybersecurity was conducted by Lee et al. ( 2020 ). The review revealed that qualitative approaches focus on high-level frameworks, and quantitative approaches to cybersecurity risk management focus on risk assessment and quantification of cyberattacks and impacts. In addition, the findings presented a four-step IoT cyber risk management framework that identifies, quantifies and prioritises cyber risks.

Datasets are an essential part of cybersecurity research, underlined by the following works. Ilhan Firat et al. ( 2021 ) examined various cybersecurity datasets in detail. The study was motivated by the fact that with the proliferation of the internet and smart technologies, the mode of cyberattacks is also evolving. However, in order to prevent such attacks, they must first be detected; the dissemination and further development of cybersecurity datasets is therefore critical. In their work, the authors observed studies of datasets used in intrusion detection systems. Khraisat et al. ( 2019 ) also identified a need for new datasets in the context of cybersecurity. The researchers presented a taxonomy of current intrusion detection systems, a comprehensive review of notable recent work, and an overview of the datasets commonly used for assessment purposes. In their conclusion, the authors noted that new datasets are needed because most machine-learning techniques are trained and evaluated on the knowledge of old datasets. These datasets do not contain new and comprehensive information and are partly derived from datasets from 1999. The authors noted that the core of this issue is the availability of new public datasets as well as their quality. The availability of data, how it is used, created and shared was also investigated by Zheng et al. ( 2018 ). The researchers analysed 965 cybersecurity research papers published between 2012 and 2016. They created a taxonomy of the types of data that are created and shared and then analysed the data collected via datasets. The researchers concluded that while datasets are recognised as valuable for cybersecurity research, the proportion of publicly available datasets is limited.

The main contributions of this review and what differentiates it from previous studies can be summarised as follows. First, as far as we can tell, it is the first work to summarise all available datasets on cyber risk and cybersecurity in the context of a systematic review and present them to the scientific community and cyber insurance and cybersecurity stakeholders. Second, we investigated, analysed, and made available the datasets to support efficient and timely progress in cyber risk research. And third, we enable comparability of datasets so that the appropriate dataset can be selected depending on the research area.

Methodology

Process and eligibility criteria.

The structure of this systematic review is inspired by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework (Page et al. 2021 ), and the search was conducted from 3 to 10 May 2021. Due to the continuous development of cyber risks and their countermeasures, only articles published in the last 10 years were considered. In addition, only articles published in peer-reviewed journals written in English were included. As a final criterion, only articles that make use of one or more cybersecurity or cyber risk datasets met the inclusion criteria. Specifically, these studies presented new or existing datasets, used them for methods, or used them to verify new results, as well as analysed them in an economic context and pointed out their effects. The criterion was fulfilled if it was clearly stated in the abstract that one or more datasets were used. A detailed explanation of this selection criterion can be found in the ‘Study selection’ section.

Information sources

In order to cover a complete spectrum of literature, various databases were queried to collect relevant literature on the topic of cybersecurity and cyber risks. Due to the spread of related articles across multiple databases, the literature search was limited to the following four databases for simplicity: IEEE Xplore, Scopus, SpringerLink and Web of Science. This is similar to other literature reviews addressing cyber risks or cybersecurity, including Sardi et al. ( 2021 ), Franke and Brynielsson ( 2014 ), Lagerström (2019), Eling and Schnell ( 2016 ) and Eling ( 2020 ). In this paper, all databases used in the aforementioned works were considered. However, only two studies also used all the databases listed. The IEEE Xplore database contains electrical engineering, computer science, and electronics work from over 200 journals and three million conference papers (IEEE 2021 ). Scopus includes 23,400 peer-reviewed journals from more than 5000 international publishers in the areas of science, engineering, medicine, social sciences and humanities (Scopus 2021 ). SpringerLink contains 3742 journals and indexes over 10 million scientific documents (SpringerLink 2021 ). Finally, Web of Science indexes over 9200 journals in different scientific disciplines (Science 2021 ).

A search string was created and applied to all databases. To make the search efficient and reproducible, the following search string with Boolean operator was used in all databases: cybersecurity OR cyber risk AND dataset OR database. To ensure uniformity of the search across all databases, some adjustments had to be made for the respective search engines. In Scopus, for example, the Advanced Search was used, and the field code ‘Title-ABS-KEY’ was integrated into the search string. For IEEE Xplore, the search was carried out with the Search String in the Command Search and ‘All Metadata’. In the Web of Science database, the Advanced Search was used. The special feature of this search was that it had to be carried out in individual steps. The first search was carried out with the terms cybersecurity OR cyber risk with the field tag Topic (T.S. =) and the second search with dataset OR database. Subsequently, these searches were combined, which then delivered the searched articles for review. For SpringerLink, the search string was used in the Advanced Search under the category ‘Find the resources with all of the words’. After conducting this search string, 5219 studies could be found. According to the eligibility criteria (period, language and only scientific journals), 1581 studies were identified in the databases:

Scopus: 135

Springer Link: 548

Web of Science: 534

An overview of the process is given in Fig.  2 . Combined with the results from the four databases, 854 articles without duplicates were identified.

figure 2

Literature search process and categorisation of the studies

Study selection

In the final step of the selection process, the articles were screened for relevance. Due to a large number of results, the abstracts were analysed in the first step of the process. The aim was to determine whether the article was relevant for the systematic review. An article fulfilled the criterion if it was recognisable in the abstract that it had made a contribution to datasets or databases with regard to cyber risks or cybersecurity. Specifically, the criterion was considered to be met if the abstract used datasets that address the causes or impacts of cyber risks, and measures in the area of cybersecurity. In this process, the number of articles was reduced to 288. The articles were then read in their entirety, and an expert panel of six people decided whether they should be used. This led to a final number of 255 articles. The years in which the articles were published and the exact number can be seen in Fig.  3 .

figure 3

Distribution of studies

Data collection process and synthesis of the results

For the data collection process, various data were extracted from the studies, including the names of the respective creators, the name of the dataset or database and the corresponding reference. It was also determined where the data came from. In the context of accessibility, it was determined whether access is free, controlled, available for purchase or not available. It was also determined when the datasets were created and the time period referenced. The application type and domain characteristics of the datasets were identified.

This section analyses the results of the systematic literature review. The previously identified studies are divided into three categories: datasets on the causes of cyber risks, datasets on the effects of cyber risks and datasets on cybersecurity. The classification is based on the intended use of the studies. This system of classification makes it easier for stakeholders to find the appropriate datasets. The categories are evaluated individually. Although complete information is available for a large proportion of datasets, this is not true for all of them. Accordingly, the abbreviation N/A has been inserted in the respective characters to indicate that this information could not be determined by the time of submission. The term ‘use cases in the literature’ in the following and supplementary tables refers to the application areas in which the corresponding datasets were used in the literature. The areas listed there refer to the topic area on which the researchers conducted their research. Since some datasets were used interdisciplinarily, the listed use cases in the literature are correspondingly longer. Before discussing each category in the next sections, Fig.  4 provides an overview of the number of datasets found and their year of creation. Figure  5 then shows the relationship between studies and datasets in the period under consideration. Figure  6 shows the distribution of studies, their use of datasets and their creation date. The number of datasets used is higher than the number of studies because the studies often used several datasets (Table 1 ).

figure 4

Distribution of dataset results

figure 5

Correlation between the studies and the datasets

figure 6

Distribution of studies and their use of datasets

Most of the datasets are generated in the U.S. (up to 58.2%). Canada and Australia rank next, with 11.3% and 5% of all the reviewed datasets, respectively.

Additionally, to create value for the datasets for the cyber insurance industry, an assessment of the applicability of each dataset has been provided for cyber insurers. This ‘Use Case Assessment’ includes the use of the data in the context of different analyses, calculation of cyber insurance premiums, and use of the information for the design of cyber insurance contracts or for additional customer services. To reasonably account for the transition of direct hyperlinks in the future, references were directed to the main websites for longevity (nearest resource point). In addition, the links to the main pages contain further information on the datasets and different versions related to the operating systems. The references were chosen in such a way that practitioners get the best overview of the respective datasets.

Case datasets

This section presents selected articles that use the datasets to analyse the causes of cyber risks. The datasets help identify emerging trends and allow pattern discovery in cyber risks. This information gives cybersecurity experts and cyber insurers the data to make better predictions and take appropriate action. For example, if certain vulnerabilities are not adequately protected, cyber insurers will demand a risk surcharge leading to an improvement in the risk-adjusted premium. Due to the capricious nature of cyber risks, existing data must be supplemented with new data sources (for example, new events, new methods or security vulnerabilities) to determine prevailing cyber exposure. The datasets of cyber risk causes could be combined with existing portfolio data from cyber insurers and integrated into existing pricing tools and factors to improve the valuation of cyber risks.

A portion of these datasets consists of several taxonomies and classifications of cyber risks. Aassal et al. ( 2020 ) propose a new taxonomy of phishing characteristics based on the interpretation and purpose of each characteristic. In comparison, Hindy et al. ( 2020 ) presented a taxonomy of network threats and the impact of current datasets on intrusion detection systems. A similar taxonomy was suggested by Kiwia et al. ( 2018 ). The authors presented a cyber kill chain-based taxonomy of banking Trojans features. The taxonomy built on a real-world dataset of 127 banking Trojans collected from December 2014 to January 2016 by a major U.K.-based financial organisation.

In the context of classification, Aamir et al. ( 2021 ) showed the benefits of machine learning for classifying port scans and DDoS attacks in a mixture of normal and attack traffic. Guo et al. ( 2020 ) presented a new method to improve malware classification based on entropy sequence features. The evaluation of this new method was conducted on different malware datasets.

To reconstruct attack scenarios and draw conclusions based on the evidence in the alert stream, Barzegar and Shajari ( 2018 ) use the DARPA2000 and MACCDC 2012 dataset for their research. Giudici and Raffinetti ( 2020 ) proposed a rank-based statistical model aimed at predicting the severity levels of cyber risk. The model used cyber risk data from the University of Milan. In contrast to the previous datasets, Skrjanc et al. ( 2018 ) used the older dataset KDD99 to monitor large-scale cyberattacks using a cauchy clustering method.

Amin et al. ( 2021 ) used a cyberattack dataset from the Canadian Institute for Cybersecurity to identify spatial clusters of countries with high rates of cyberattacks. In the context of cybercrime, Junger et al. ( 2020 ) examined crime scripts, key characteristics of the target company and the relationship between criminal effort and financial benefit. For their study, the authors analysed 300 cases of fraudulent activities against Dutch companies. With a similar focus on cybercrime, Mireles et al. ( 2019 ) proposed a metric framework to measure the effectiveness of the dynamic evolution of cyberattacks and defensive measures. To validate its usefulness, they used the DEFCON dataset.

Due to the rapidly changing nature of cyber risks, it is often impossible to obtain all information on them. Kim and Kim ( 2019 ) proposed an automated dataset generation system called CTIMiner that collects threat data from publicly available security reports and malware repositories. They released a dataset to the public containing about 640,000 records from 612 security reports published between January 2008 and 2019. A similar approach is proposed by Kim et al. ( 2020 ), using a named entity recognition system to extract core information from cyber threat reports automatically. They created a 498,000-tag dataset during their research (Ulven and Wangen 2021 ).

Within the framework of vulnerabilities and cybersecurity issues, Ulven and Wangen ( 2021 ) proposed an overview of mission-critical assets and everyday threat events, suggested a generic threat model, and summarised common cybersecurity vulnerabilities. With a focus on hospitality, Chen and Fiscus ( 2018 ) proposed several issues related to cybersecurity in this sector. They analysed 76 security incidents from the Privacy Rights Clearinghouse database. Supplementary Table 1 lists all findings that belong to the cyber causes dataset.

Impact datasets

This section outlines selected findings of the cyber impact dataset. For cyber insurers, these datasets can form an important basis for information, as they can be used to calculate cyber insurance premiums, evaluate specific cyber risks, formulate inclusions and exclusions in cyber wordings, and re-evaluate as well as supplement the data collected so far on cyber risks. For example, information on financial losses can help to better assess the loss potential of cyber risks. Furthermore, the datasets can provide insight into the frequency of occurrence of these cyber risks. The new datasets can be used to close any data gaps that were previously based on very approximate estimates or to find new results.

Eight studies addressed the costs of data breaches. For instance, Eling and Jung ( 2018 ) reviewed 3327 data breach events from 2005 to 2016 and identified an asymmetric dependence of monthly losses by breach type and industry. The authors used datasets from the Privacy Rights Clearinghouse for analysis. The Privacy Rights Clearinghouse datasets and the Breach level index database were also used by De Giovanni et al. ( 2020 ) to describe relationships between data breaches and bitcoin-related variables using the cointegration methodology. The data were obtained from the Department of Health and Human Services of healthcare facilities reporting data breaches and a national database of technical and organisational infrastructure information. Also in the context of data breaches, Algarni et al. ( 2021 ) developed a comprehensive, formal model that estimates the two components of security risks: breach cost and the likelihood of a data breach within 12 months. For their survey, the authors used two industrial reports from the Ponemon institute and VERIZON. To illustrate the scope of data breaches, Neto et al. ( 2021 ) identified 430 major data breach incidents among more than 10,000 incidents. The database created is available and covers the period 2018 to 2019.

With a direct focus on insurance, Biener et al. ( 2015 ) analysed 994 cyber loss cases from an operational risk database and investigated the insurability of cyber risks based on predefined criteria. For their study, they used data from the company SAS OpRisk Global Data. Similarly, Eling and Wirfs ( 2019 ) looked at a wide range of cyber risk events and actual cost data using the same database. They identified cyber losses and analysed them using methods from statistics and actuarial science. Using a similar reference, Farkas et al. ( 2021 ) proposed a method for analysing cyber claims based on regression trees to identify criteria for classifying and evaluating claims. Similar to Chen and Fiscus ( 2018 ), the dataset used was the Privacy Rights Clearinghouse database. Within the framework of reinsurance, Moro ( 2020 ) analysed cyber index-based information technology activity to see if index-parametric reinsurance coverage could suggest its cedant using data from a Symantec dataset.

Paté-Cornell et al. ( 2018 ) presented a general probabilistic risk analysis framework for cybersecurity in an organisation to be specified. The results are distributions of losses to cyberattacks, with and without considered countermeasures in support of risk management decisions based both on past data and anticipated incidents. The data used were from The Common Vulnerability and Exposures database and via confidential access to a database of cyberattacks on a large, U.S.-based organisation. A different conceptual framework for cyber risk classification and assessment was proposed by Sheehan et al. ( 2021 ). This framework showed the importance of proactive and reactive barriers in reducing companies’ exposure to cyber risk and quantifying the risk. Another approach to cyber risk assessment and mitigation was proposed by Mukhopadhyay et al. ( 2019 ). They estimated the probability of an attack using generalised linear models, predicted the security technology required to reduce the probability of cyberattacks, and used gamma and exponential distributions to best approximate the average loss data for each malicious attack. They also calculated the expected loss due to cyberattacks, calculated the net premium that would need to be charged by a cyber insurer, and suggested cyber insurance as a strategy to minimise losses. They used the CSI-FBI survey (1997–2010) to conduct their research.

In order to highlight the lack of data on cyber risks, Eling ( 2020 ) conducted a literature review in the areas of cyber risk and cyber insurance. Available information on the frequency, severity, and dependency structure of cyber risks was filtered out. In addition, open questions for future cyber risk research were set up. Another example of data collection on the impact of cyberattacks is provided by Sornette et al. ( 2013 ), who use a database of newspaper articles, press reports and other media to provide a predictive method to identify triggering events and potential accident scenarios and estimate their severity and frequency. A similar approach to data collection was used by Arcuri et al. ( 2020 ) to gather an original sample of global cyberattacks from newspaper reports sourced from the LexisNexis database. This collection is also used and applied to the fields of dynamic communication and cyber risk perception by Fang et al. ( 2021 ). To create a dataset of cyber incidents and disputes, Valeriano and Maness ( 2014 ) collected information on cyber interactions between rival states.

To assess trends and the scale of economic cybercrime, Levi ( 2017 ) examined datasets from different countries and their impact on crime policy. Pooser et al. ( 2018 ) investigated the trend in cyber risk identification from 2006 to 2015 and company characteristics related to cyber risk perception. The authors used a dataset of various reports from cyber insurers for their study. Walker-Roberts et al. ( 2020 ) investigated the spectrum of risk of a cybersecurity incident taking place in the cyber-physical-enabled world using the VERIS Community Database. The datasets of impacts identified are presented below. Due to overlap, some may also appear in the causes dataset (Supplementary Table 2).

Cybersecurity datasets

General intrusion detection.

General intrusion detection systems account for the largest share of countermeasure datasets. For companies or researchers focused on cybersecurity, the datasets can be used to test their own countermeasures or obtain information about potential vulnerabilities. For example, Al-Omari et al. ( 2021 ) proposed an intelligent intrusion detection model for predicting and detecting attacks in cyberspace, which was applied to dataset UNSW-NB 15. A similar approach was taken by Choras and Kozik ( 2015 ), who used machine learning to detect cyberattacks on web applications. To evaluate their method, they used the HTTP dataset CSIC 2010. For the identification of unknown attacks on web servers, Kamarudin et al. ( 2017 ) proposed an anomaly-based intrusion detection system using an ensemble classification approach. Ganeshan and Rodrigues ( 2020 ) showed an intrusion detection system approach, which clusters the database into several groups and detects the presence of intrusion in the clusters. In comparison, AlKadi et al. ( 2019 ) used a localisation-based model to discover abnormal patterns in network traffic. Hybrid models have been recommended by Bhattacharya et al. ( 2020 ) and Agrawal et al. ( 2019 ); the former is a machine-learning model based on principal component analysis for the classification of intrusion detection system datasets, while the latter is a hybrid ensemble intrusion detection system for anomaly detection using different datasets to detect patterns in network traffic that deviate from normal behaviour.

Agarwal et al. ( 2021 ) used three different machine learning algorithms in their research to find the most suitable for efficiently identifying patterns of suspicious network activity. The UNSW-NB15 dataset was used for this purpose. Kasongo and Sun ( 2020 ), Feed-Forward Deep Neural Network (FFDNN), Keshk et al. ( 2021 ), the privacy-preserving anomaly detection framework, and others also use the UNSW-NB 15 dataset as part of intrusion detection systems. The same dataset and others were used by Binbusayyis and Vaiyapuri ( 2019 ) to identify and compare key features for cyber intrusion detection. Atefinia and Ahmadi ( 2021 ) proposed a deep neural network model to reduce the false positive rate of an anomaly-based intrusion detection system. Fossaceca et al. ( 2015 ) focused in their research on the development of a framework that combined the outputs of multiple learners in order to improve the efficacy of network intrusion, and Gauthama Raman et al. ( 2020 ) presented a search algorithm based on Support Vector machine to improve the performance of the detection and false alarm rate to improve intrusion detection techniques. Ahmad and Alsemmeari ( 2020 ) targeted extreme learning machine techniques due to their good capabilities in classification problems and handling huge data. They used the NSL-KDD dataset as a benchmark.

With reference to prediction, Bakdash et al. ( 2018 ) used datasets from the U.S. Department of Defence to predict cyberattacks by malware. This dataset consists of weekly counts of cyber events over approximately seven years. Another prediction method was presented by Fan et al. ( 2018 ), which showed an improved integrated cybersecurity prediction method based on spatial-time analysis. Also, with reference to prediction, Ashtiani and Azgomi ( 2014 ) proposed a framework for the distributed simulation of cyberattacks based on high-level architecture. Kirubavathi and Anitha ( 2016 ) recommended an approach to detect botnets, irrespective of their structures, based on network traffic flow behaviour analysis and machine-learning techniques. Dwivedi et al. ( 2021 ) introduced a multi-parallel adaptive technique to utilise an adaption mechanism in the group of swarms for network intrusion detection. AlEroud and Karabatis ( 2018 ) presented an approach that used contextual information to automatically identify and query possible semantic links between different types of suspicious activities extracted from network flows.

Intrusion detection systems with a focus on IoT

In addition to general intrusion detection systems, a proportion of studies focused on IoT. Habib et al. ( 2020 ) presented an approach for converting traditional intrusion detection systems into smart intrusion detection systems for IoT networks. To enhance the process of diagnostic detection of possible vulnerabilities with an IoT system, Georgescu et al. ( 2019 ) introduced a method that uses a named entity recognition-based solution. With regard to IoT in the smart home sector, Heartfield et al. ( 2021 ) presented a detection system that is able to autonomously adjust the decision function of its underlying anomaly classification models to a smart home’s changing condition. Another intrusion detection system was suggested by Keserwani et al. ( 2021 ), which combined Grey Wolf Optimization and Particle Swam Optimization to identify various attacks for IoT networks. They used the KDD Cup 99, NSL-KDD and CICIDS-2017 to evaluate their model. Abu Al-Haija and Zein-Sabatto ( 2020 ) provide a comprehensive development of a new intelligent and autonomous deep-learning-based detection and classification system for cyberattacks in IoT communication networks that leverage the power of convolutional neural networks, abbreviated as IoT-IDCS-CNN (IoT-based Intrusion Detection and Classification System using Convolutional Neural Network). To evaluate the development, the authors used the NSL-KDD dataset. Biswas and Roy ( 2021 ) recommended a model that identifies malicious botnet traffic using novel deep-learning approaches like artificial neural networks gutted recurrent units and long- or short-term memory models. They tested their model with the Bot-IoT dataset.

With a more forensic background, Koroniotis et al. ( 2020 ) submitted a network forensic framework, which described the digital investigation phases for identifying and tracing attack behaviours in IoT networks. The suggested work was evaluated with the Bot-IoT and UINSW-NB15 datasets. With a focus on big data and IoT, Chhabra et al. ( 2020 ) presented a cyber forensic framework for big data analytics in an IoT environment using machine learning. Furthermore, the authors mentioned different publicly available datasets for machine-learning models.

A stronger focus on a mobile phones was exhibited by Alazab et al. ( 2020 ), which presented a classification model that combined permission requests and application programme interface calls. The model was tested with a malware dataset containing 27,891 Android apps. A similar approach was taken by Li et al. ( 2019a , b ), who proposed a reliable classifier for Android malware detection based on factorisation machine architecture and extraction of Android app features from manifest files and source code.

Literature reviews

In addition to the different methods and models for intrusion detection systems, various literature reviews on the methods and datasets were also found. Liu and Lang ( 2019 ) proposed a taxonomy of intrusion detection systems that uses data objects as the main dimension to classify and summarise machine learning and deep learning-based intrusion detection literature. They also presented four different benchmark datasets for machine-learning detection systems. Ahmed et al. ( 2016 ) presented an in-depth analysis of four major categories of anomaly detection techniques, which include classification, statistical, information theory and clustering. Hajj et al. ( 2021 ) gave a comprehensive overview of anomaly-based intrusion detection systems. Their article gives an overview of the requirements, methods, measurements and datasets that are used in an intrusion detection system.

Within the framework of machine learning, Chattopadhyay et al. ( 2018 ) conducted a comprehensive review and meta-analysis on the application of machine-learning techniques in intrusion detection systems. They also compared different machine learning techniques in different datasets and summarised the performance. Vidros et al. ( 2017 ) presented an overview of characteristics and methods in automatic detection of online recruitment fraud. They also published an available dataset of 17,880 annotated job ads, retrieved from the use of a real-life system. An empirical study of different unsupervised learning algorithms used in the detection of unknown attacks was presented by Meira et al. ( 2020 ).

New datasets

Kilincer et al. ( 2021 ) reviewed different intrusion detection system datasets in detail. They had a closer look at the UNS-NB15, ISCX-2012, NSL-KDD and CIDDS-001 datasets. Stojanovic et al. ( 2020 ) also provided a review on datasets and their creation for use in advanced persistent threat detection in the literature. Another review of datasets was provided by Sarker et al. ( 2020 ), who focused on cybersecurity data science as part of their research and provided an overview from a machine-learning perspective. Avila et al. ( 2021 ) conducted a systematic literature review on the use of security logs for data leak detection. They recommended a new classification of information leak, which uses the GDPR principles, identified the most widely publicly available dataset for threat detection, described the attack types in the datasets and the algorithms used for data leak detection. Tuncer et al. ( 2020 ) presented a bytecode-based detection method consisting of feature extraction using local neighbourhood binary patterns. They chose a byte-based malware dataset to investigate the performance of the proposed local neighbourhood binary pattern-based detection method. With a different focus, Mauro et al. ( 2020 ) gave an experimental overview of neural-based techniques relevant to intrusion detection. They assessed the value of neural networks using the Bot-IoT and UNSW-DB15 datasets.

Another category of results in the context of countermeasure datasets is those that were presented as new. Moreno et al. ( 2018 ) developed a database of 300 security-related accidents from European and American sources. The database contained cybersecurity-related events in the chemical and process industry. Damasevicius et al. ( 2020 ) proposed a new dataset (LITNET-2020) for network intrusion detection. The dataset is a new annotated network benchmark dataset obtained from the real-world academic network. It presents real-world examples of normal and under-attack network traffic. With a focus on IoT intrusion detection systems, Alsaedi et al. ( 2020 ) proposed a new benchmark IoT/IIot datasets for assessing intrusion detection system-enabled IoT systems. Also in the context of IoT, Vaccari et al. ( 2020 ) proposed a dataset focusing on message queue telemetry transport protocols, which can be used to train machine-learning models. To evaluate the performance of machine-learning classifiers, Mahfouz et al. ( 2020 ) created a dataset called Game Theory and Cybersecurity (GTCS). A dataset containing 22,000 malware and benign samples was constructed by Martin et al. ( 2019 ). The dataset can be used as a benchmark to test the algorithm for Android malware classification and clustering techniques. In addition, Laso et al. ( 2017 ) presented a dataset created to investigate how data and information quality estimates enable the detection of anomalies and malicious acts in cyber-physical systems. The dataset contained various cyberattacks and is publicly available.

In addition to the results described above, several other studies were found that fit into the category of countermeasures. Johnson et al. ( 2016 ) examined the time between vulnerability disclosures. Using another vulnerabilities database, Common Vulnerabilities and Exposures (CVE), Subroto and Apriyana ( 2019 ) presented an algorithm model that uses big data analysis of social media and statistical machine learning to predict cyber risks. A similar databank but with a different focus, Common Vulnerability Scoring System, was used by Chatterjee and Thekdi ( 2020 ) to present an iterative data-driven learning approach to vulnerability assessment and management for complex systems. Using the CICIDS2017 dataset to evaluate the performance, Malik et al. ( 2020 ) proposed a control plane-based orchestration for varied, sophisticated threats and attacks. The same dataset was used in another study by Lee et al. ( 2019 ), who developed an artificial security information event management system based on a combination of event profiling for data processing and different artificial network methods. To exploit the interdependence between multiple series, Fang et al. ( 2021 ) proposed a statistical framework. In order to validate the framework, the authors applied it to a dataset of enterprise-level security breaches from the Privacy Rights Clearinghouse and Identity Theft Center database. Another framework with a defensive aspect was recommended by Li et al. ( 2021 ) to increase the robustness of deep neural networks against adversarial malware evasion attacks. Sarabi et al. ( 2016 ) investigated whether and to what extent business details can help assess an organisation's risk of data breaches and the distribution of risk across different types of incidents to create policies for protection, detection and recovery from different forms of security incidents. They used data from the VERIS Community Database.

Datasets that have been classified into the cybersecurity category are detailed in Supplementary Table 3. Due to overlap, records from the previous tables may also be included.

This paper presented a systematic literature review of studies on cyber risk and cybersecurity that used datasets. Within this framework, 255 studies were fully reviewed and then classified into three different categories. Then, 79 datasets were consolidated from these studies. These datasets were subsequently analysed, and important information was selected through a process of filtering out. This information was recorded in a table and enhanced with further information as part of the literature analysis. This made it possible to create a comprehensive overview of the datasets. For example, each dataset contains a description of where the data came from and how the data has been used to date. This allows different datasets to be compared and the appropriate dataset for the use case to be selected. This research certainly has limitations, so our selection of datasets cannot necessarily be taken as a representation of all available datasets related to cyber risks and cybersecurity. For example, literature searches were conducted in four academic databases and only found datasets that were used in the literature. Many research projects also used old datasets that may no longer consider current developments. In addition, the data are often focused on only one observation and are limited in scope. For example, the datasets can only be applied to specific contexts and are also subject to further limitations (e.g. region, industry, operating system). In the context of the applicability of the datasets, it is unfortunately not possible to make a clear statement on the extent to which they can be integrated into academic or practical areas of application or how great this effort is. Finally, it remains to be pointed out that this is an overview of currently available datasets, which are subject to constant change.

Due to the lack of datasets on cyber risks in the academic literature, additional datasets on cyber risks were integrated as part of a further search. The search was conducted on the Google Dataset search portal. The search term used was ‘cyber risk datasets’. Over 100 results were found. However, due to the low significance and verifiability, only 20 selected datasets were included. These can be found in Table 2  in the “ Appendix ”.

The results of the literature review and datasets also showed that there continues to be a lack of available, open cyber datasets. This lack of data is reflected in cyber insurance, for example, as it is difficult to find a risk-based premium without a sufficient database (Nurse et al. 2020 ). The global cyber insurance market was estimated at USD 5.5 billion in 2020 (Dyson 2020 ). When compared to the USD 1 trillion global losses from cybercrime (Maleks Smith et al. 2020 ), it is clear that there exists a significant cyber risk awareness challenge for both the insurance industry and international commerce. Without comprehensive and qualitative data on cyber losses, it can be difficult to estimate potential losses from cyberattacks and price cyber insurance accordingly (GAO 2021 ). For instance, the average cyber insurance loss increased from USD 145,000 in 2019 to USD 359,000 in 2020 (FitchRatings 2021 ). Cyber insurance is an important risk management tool to mitigate the financial impact of cybercrime. This is particularly evident in the impact of different industries. In the Energy & Commodities financial markets, a ransomware attack on the Colonial Pipeline led to a substantial impact on the U.S. economy. As a result of the attack, about 45% of the U.S. East Coast was temporarily unable to obtain supplies of diesel, petrol and jet fuel. This caused the average price in the U.S. to rise 7 cents to USD 3.04 per gallon, the highest in seven years (Garber 2021 ). In addition, Colonial Pipeline confirmed that it paid a USD 4.4 million ransom to a hacker gang after the attack. Another ransomware attack occurred in the healthcare and government sector. The victim of this attack was the Irish Health Service Executive (HSE). A ransom payment of USD 20 million was demanded from the Irish government to restore services after the hack (Tidy 2021 ). In the car manufacturing sector, Miller and Valasek ( 2015 ) initiated a cyberattack that resulted in the recall of 1.4 million vehicles and cost manufacturers EUR 761 million. The risk that arises in the context of these events is the potential for the accumulation of cyber losses, which is why cyber insurers are not expanding their capacity. An example of this accumulation of cyber risks is the NotPetya malware attack, which originated in Russia, struck in Ukraine, and rapidly spread around the world, causing at least USD 10 billion in damage (GAO 2021 ). These events highlight the importance of proper cyber risk management.

This research provides cyber insurance stakeholders with an overview of cyber datasets. Cyber insurers can use the open datasets to improve their understanding and assessment of cyber risks. For example, the impact datasets can be used to better measure financial impacts and their frequencies. These data could be combined with existing portfolio data from cyber insurers and integrated with existing pricing tools and factors to better assess cyber risk valuation. Although most cyber insurers have sparse historical cyber policy and claims data, they remain too small at present for accurate prediction (Bessy-Roland et al. 2021 ). A combination of portfolio data and external datasets would support risk-adjusted pricing for cyber insurance, which would also benefit policyholders. In addition, cyber insurance stakeholders can use the datasets to identify patterns and make better predictions, which would benefit sustainable cyber insurance coverage. In terms of cyber risk cause datasets, cyber insurers can use the data to review their insurance products. For example, the data could provide information on which cyber risks have not been sufficiently considered in product design or where improvements are needed. A combination of cyber cause and cybersecurity datasets can help establish uniform definitions to provide greater transparency and clarity. Consistent terminology could lead to a more sustainable cyber market, where cyber insurers make informed decisions about the level of coverage and policyholders understand their coverage (The Geneva Association 2020).

In addition to the cyber insurance community, this research also supports cybersecurity stakeholders. The reviewed literature can be used to provide a contemporary, contextual and categorised summary of available datasets. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks. With the help of the described cybersecurity datasets and the identified information, a comparison of different datasets is possible. The datasets can be used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems.

In this paper, we conducted a systematic review of studies on cyber risk and cybersecurity databases. We found that most of the datasets are in the field of intrusion detection and machine learning and are used for technical cybersecurity aspects. The available datasets on cyber risks were relatively less represented. Due to the dynamic nature and lack of historical data, assessing and understanding cyber risk is a major challenge for cyber insurance stakeholders. To address this challenge, a greater density of cyber data is needed to support cyber insurers in risk management and researchers with cyber risk-related topics. With reference to ‘Open Science’ FAIR data (Jacobsen et al. 2020 ), mandatory reporting of cyber incidents could help improve cyber understanding, awareness and loss prevention among companies and insurers. Through greater availability of data, cyber risks can be better understood, enabling researchers to conduct more in-depth research into these risks. Companies could incorporate this new knowledge into their corporate culture to reduce cyber risks. For insurance companies, this would have the advantage that all insurers would have the same understanding of cyber risks, which would support sustainable risk-based pricing. In addition, common definitions of cyber risks could be derived from new data.

The cybersecurity databases summarised and categorised in this research could provide a different perspective on cyber risks that would enable the formulation of common definitions in cyber policies. The datasets can help companies addressing cybersecurity and cyber risk as part of risk management assess their internal cyber posture and cybersecurity measures. The paper can also help improve risk awareness and corporate behaviour, and provides the research community with a comprehensive overview of peer-reviewed datasets and other available datasets in the area of cyber risk and cybersecurity. This approach is intended to support the free availability of data for research. The complete tabulated review of the literature is included in the Supplementary Material.

This work provides directions for several paths of future work. First, there are currently few publicly available datasets for cyber risk and cybersecurity. The older datasets that are still widely used no longer reflect today's technical environment. Moreover, they can often only be used in one context, and the scope of the samples is very limited. It would be of great value if more datasets were publicly available that reflect current environmental conditions. This could help intrusion detection systems to consider current events and thus lead to a higher success rate. It could also compensate for the disadvantages of older datasets by collecting larger quantities of samples and making this contextualisation more widespread. Another area of research may be the integratability and adaptability of cybersecurity and cyber risk datasets. For example, it is often unclear to what extent datasets can be integrated or adapted to existing data. For cyber risks and cybersecurity, it would be helpful to know what requirements need to be met or what is needed to use the datasets appropriately. In addition, it would certainly be helpful to know whether datasets can be modified to be used for cyber risks or cybersecurity. Finally, the ability for stakeholders to identify machine-readable cybersecurity datasets would be useful because it would allow for even clearer delineations or comparisons between datasets. Due to the lack of publicly available datasets, concrete benchmarks often cannot be applied.

Average cost of a breach of more than 50 million records.

Aamir, M., S.S.H. Rizvi, M.A. Hashmani, M. Zubair, and J. Ahmad. 2021. Machine learning classification of port scanning and DDoS attacks: A comparative analysis. Mehran University Research Journal of Engineering and Technology 40 (1): 215–229. https://doi.org/10.22581/muet1982.2101.19 .

Article   Google Scholar  

Aamir, M., and S.M.A. Zaidi. 2019. DDoS attack detection with feature engineering and machine learning: The framework and performance evaluation. International Journal of Information Security 18 (6): 761–785. https://doi.org/10.1007/s10207-019-00434-1 .

Aassal, A. El, S. Baki, A. Das, and R.M. Verma. 2020. 2020. An in-depth benchmarking and evaluation of phishing detection research for security needs. IEEE Access 8: 22170–22192. https://doi.org/10.1109/ACCESS.2020.2969780 .

Abu Al-Haija, Q., and S. Zein-Sabatto. 2020. An efficient deep-learning-based detection and classification system for cyber-attacks in IoT communication networks. Electronics 9 (12): 26. https://doi.org/10.3390/electronics9122152 .

Adhikari, U., T.H. Morris, and S.Y. Pan. 2018. Applying Hoeffding adaptive trees for real-time cyber-power event and intrusion classification. IEEE Transactions on Smart Grid 9 (5): 4049–4060. https://doi.org/10.1109/tsg.2017.2647778 .

Agarwal, A., P. Sharma, M. Alshehri, A.A. Mohamed, and O. Alfarraj. 2021. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science . https://doi.org/10.7717/peerj-cs.437 .

Agrafiotis, I., J.R.C.. Nurse, M. Goldsmith, S. Creese, and D. Upton. 2018. A taxonomy of cyber-harms: Defining the impacts of cyber-attacks and understanding how they propagate. Journal of Cybersecurity 4: tyy006.

Agrawal, A., S. Mohammed, and J. Fiaidhi. 2019. Ensemble technique for intruder detection in network traffic. International Journal of Security and Its Applications 13 (3): 1–8. https://doi.org/10.33832/ijsia.2019.13.3.01 .

Ahmad, I., and R.A. Alsemmeari. 2020. Towards improving the intrusion detection through ELM (extreme learning machine). CMC Computers Materials & Continua 65 (2): 1097–1111. https://doi.org/10.32604/cmc.2020.011732 .

Ahmed, M., A.N. Mahmood, and J.K. Hu. 2016. A survey of network anomaly detection techniques. Journal of Network and Computer Applications 60: 19–31. https://doi.org/10.1016/j.jnca.2015.11.016 .

Al-Jarrah, O.Y., O. Alhussein, P.D. Yoo, S. Muhaidat, K. Taha, and K. Kim. 2016. Data randomization and cluster-based partitioning for Botnet intrusion detection. IEEE Transactions on Cybernetics 46 (8): 1796–1806. https://doi.org/10.1109/TCYB.2015.2490802 .

Al-Mhiqani, M.N., R. Ahmad, Z.Z. Abidin, W. Yassin, A. Hassan, K.H. Abdulkareem, N.S. Ali, and Z. Yunos. 2020. A review of insider threat detection: Classification, machine learning techniques, datasets, open challenges, and recommendations. Applied Sciences—Basel 10 (15): 41. https://doi.org/10.3390/app10155208 .

Al-Omari, M., M. Rawashdeh, F. Qutaishat, M. Alshira’H, and N. Ababneh. 2021. An intelligent tree-based intrusion detection model for cyber security. Journal of Network and Systems Management 29 (2): 18. https://doi.org/10.1007/s10922-021-09591-y .

Alabdallah, A., and M. Awad. 2018. Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System. KSII Transactions on Internet and Information Systems 12 (10): 5143–5158. https://doi.org/10.3837/tiis.2018.10.027 .

Alazab, M., M. Alazab, A. Shalaginov, A. Mesleh, and A. Awajan. 2020. Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems—the International Journal of eScience 107: 509–521. https://doi.org/10.1016/j.future.2020.02.002 .

Albahar, M.A., R.A. Al-Falluji, and M. Binsawad. 2020. An empirical comparison on malicious activity detection using different neural network-based models. IEEE Access 8: 61549–61564. https://doi.org/10.1109/ACCESS.2020.2984157 .

AlEroud, A.F., and G. Karabatis. 2018. Queryable semantics to detect cyber-attacks: A flow-based detection approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48 (2): 207–223. https://doi.org/10.1109/TSMC.2016.2600405 .

Algarni, A.M., V. Thayananthan, and Y.K. Malaiya. 2021. Quantitative assessment of cybersecurity risks for mitigating data breaches in business systems. Applied Sciences (switzerland) . https://doi.org/10.3390/app11083678 .

Alhowaide, A., I. Alsmadi, and J. Tang. 2021. Towards the design of real-time autonomous IoT NIDS. Cluster Computing—the Journal of Networks Software Tools and Applications . https://doi.org/10.1007/s10586-021-03231-5 .

Ali, S., and Y. Li. 2019. Learning multilevel auto-encoders for DDoS attack detection in smart grid network. IEEE Access 7: 108647–108659. https://doi.org/10.1109/ACCESS.2019.2933304 .

AlKadi, O., N. Moustafa, B. Turnbull, and K.K.R. Choo. 2019. Mixture localization-based outliers models for securing data migration in cloud centers. IEEE Access 7: 114607–114618. https://doi.org/10.1109/ACCESS.2019.2935142 .

Allianz. 2021. Allianz Risk Barometer. https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/Allianz-Risk-Barometer-2021.pdf . Accessed 15 May 2021.

Almiani, M., A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and Razaque, A. 2020. Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory 101: 102031. https://doi.org/10.1016/j.simpat.2019.102031

Alsaedi, A., N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar. 2020. TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access 8: 165130–165150. https://doi.org/10.1109/access.2020.3022862 .

Alsamiri, J., and K. Alsubhi. 2019. Internet of Things cyber attacks detection using machine learning. International Journal of Advanced Computer Science and Applications 10 (12): 627–634.

Alsharafat, W. 2013. Applying artificial neural network and eXtended classifier system for network intrusion detection. International Arab Journal of Information Technology 10 (3): 230–238.

Google Scholar  

Amin, R.W., H.E. Sevil, S. Kocak, G. Francia III., and P. Hoover. 2021. The spatial analysis of the malicious uniform resource locators (URLs): 2016 dataset case study. Information (switzerland) 12 (1): 1–18. https://doi.org/10.3390/info12010002 .

Arcuri, M.C., L.Z. Gai, F. Ielasi, and E. Ventisette. 2020. Cyber attacks on hospitality sector: Stock market reaction. Journal of Hospitality and Tourism Technology 11 (2): 277–290. https://doi.org/10.1108/jhtt-05-2019-0080 .

Arp, D., M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C.E.R.T. Siemens. 2014. Drebin: Effective and explainable detection of android malware in your pocket. In Ndss 14: 23–26.

Ashtiani, M., and M.A. Azgomi. 2014. A distributed simulation framework for modeling cyber attacks and the evaluation of security measures. Simulation 90 (9): 1071–1102. https://doi.org/10.1177/0037549714540221 .

Atefinia, R., and M. Ahmadi. 2021. Network intrusion detection using multi-architectural modular deep neural network. Journal of Supercomputing 77 (4): 3571–3593. https://doi.org/10.1007/s11227-020-03410-y .

Avila, R., R. Khoury, R. Khoury, and F. Petrillo. 2021. Use of security logs for data leak detection: A systematic literature review. Security and Communication Networks 2021: 29. https://doi.org/10.1155/2021/6615899 .

Azeez, N.A., T.J. Ayemobola, S. Misra, R. Maskeliunas, and R. Damasevicius. 2019. Network Intrusion Detection with a Hashing Based Apriori Algorithm Using Hadoop MapReduce. Computers 8 (4): 15. https://doi.org/10.3390/computers8040086 .

Bakdash, J.Z., S. Hutchinson, E.G. Zaroukian, L.R. Marusich, S. Thirumuruganathan, C. Sample, B. Hoffman, and G. Das. 2018. Malware in the future forecasting of analyst detection of cyber events. Journal of Cybersecurity . https://doi.org/10.1093/cybsec/tyy007 .

Barletta, V.S., D. Caivano, A. Nannavecchia, and M. Scalera. 2020. Intrusion detection for in-vehicle communication networks: An unsupervised Kohonen SOM approach. Future Internet . https://doi.org/10.3390/FI12070119 .

Barzegar, M., and M. Shajari. 2018. Attack scenario reconstruction using intrusion semantics. Expert Systems with Applications 108: 119–133. https://doi.org/10.1016/j.eswa.2018.04.030 .

Bessy-Roland, Y., A. Boumezoued, and C. Hillairet. 2021. Multivariate Hawkes process for cyber insurance. Annals of Actuarial Science 15 (1): 14–39.

Bhardwaj, A., V. Mangat, and R. Vig. 2020. Hyperband tuned deep neural network with well posed stacked sparse AutoEncoder for detection of DDoS attacks in cloud. IEEE Access 8: 181916–181929. https://doi.org/10.1109/ACCESS.2020.3028690 .

Bhati, B.S., C.S. Rai, B. Balamurugan, and F. Al-Turjman. 2020. An intrusion detection scheme based on the ensemble of discriminant classifiers. Computers & Electrical Engineering 86: 9. https://doi.org/10.1016/j.compeleceng.2020.106742 .

Bhattacharya, S., S.S.R. Krishnan, P.K.R. Maddikunta, R. Kaluri, S. Singh, T.R. Gadekallu, M. Alazab, and U. Tariq. 2020. A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics 9 (2): 16. https://doi.org/10.3390/electronics9020219 .

Bibi, I., A. Akhunzada, J. Malik, J. Iqbal, A. Musaddiq, and S. Kim. 2020. A dynamic DL-driven architecture to combat sophisticated android malware. IEEE Access 8: 129600–129612. https://doi.org/10.1109/ACCESS.2020.3009819 .

Biener, C., M. Eling, and J.H. Wirfs. 2015. Insurability of cyber risk: An empirical analysis. The   Geneva Papers on Risk and Insurance—Issues and Practice 40 (1): 131–158. https://doi.org/10.1057/gpp.2014.19 .

Binbusayyis, A., and T. Vaiyapuri. 2019. Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach. IEEE Access 7: 106495–106513. https://doi.org/10.1109/ACCESS.2019.2929487 .

Biswas, R., and S. Roy. 2021. Botnet traffic identification using neural networks. Multimedia Tools and Applications . https://doi.org/10.1007/s11042-021-10765-8 .

Bouyeddou, B., F. Harrou, B. Kadri, and Y. Sun. 2021. Detecting network cyber-attacks using an integrated statistical approach. Cluster Computing—the Journal of Networks Software Tools and Applications 24 (2): 1435–1453. https://doi.org/10.1007/s10586-020-03203-1 .

Bozkir, A.S., and M. Aydos. 2020. LogoSENSE: A companion HOG based logo detection scheme for phishing web page and E-mail brand recognition. Computers & Security 95: 18. https://doi.org/10.1016/j.cose.2020.101855 .

Brower, D., and M. McCormick. 2021. Colonial pipeline resumes operations following ransomware attack. Financial Times .

Cai, H., F. Zhang, and A. Levi. 2019. An unsupervised method for detecting shilling attacks in recommender systems by mining item relationship and identifying target items. The Computer Journal 62 (4): 579–597. https://doi.org/10.1093/comjnl/bxy124 .

Cebula, J.J., M.E. Popeck, and L.R. Young. 2014. A Taxonomy of Operational Cyber Security Risks Version 2 .

Chadza, T., K.G. Kyriakopoulos, and S. Lambotharan. 2020. Learning to learn sequential network attacks using hidden Markov models. IEEE Access 8: 134480–134497. https://doi.org/10.1109/ACCESS.2020.3011293 .

Chatterjee, S., and S. Thekdi. 2020. An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems. Reliability Engineering and System Safety . https://doi.org/10.1016/j.ress.2019.106664 .

Chattopadhyay, M., R. Sen, and S. Gupta. 2018. A comprehensive review and meta-analysis on applications of machine learning techniques in intrusion detection. Australasian Journal of Information Systems 22: 27.

Chen, H.S., and J. Fiscus. 2018. The inhospitable vulnerability: A need for cybersecurity risk assessment in the hospitality industry. Journal of Hospitality and Tourism Technology 9 (2): 223–234. https://doi.org/10.1108/JHTT-07-2017-0044 .

Chhabra, G.S., V.P. Singh, and M. Singh. 2020. Cyber forensics framework for big data analytics in IoT environment using machine learning. Multimedia Tools and Applications 79 (23–24): 15881–15900. https://doi.org/10.1007/s11042-018-6338-1 .

Chiba, Z., N. Abghour, K. Moussaid, A. Elomri, and M. Rida. 2019. Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms. Computers and Security 86: 291–317. https://doi.org/10.1016/j.cose.2019.06.013 .

Choras, M., and R. Kozik. 2015. Machine learning techniques applied to detect cyber attacks on web applications. Logic Journal of the IGPL 23 (1): 45–56. https://doi.org/10.1093/jigpal/jzu038 .

Chowdhury, S., M. Khanzadeh, R. Akula, F. Zhang, S. Zhang, H. Medal, M. Marufuzzaman, and L. Bian. 2017. Botnet detection using graph-based feature clustering. Journal of Big Data 4 (1): 14. https://doi.org/10.1186/s40537-017-0074-7 .

Cost Of A Cyber Incident: Systematic Review And Cross-Validation, Cybersecurity & Infrastructure Agency , 1, https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf (2020).

D’Hooge, L., T. Wauters, B. Volckaert, and F. De Turck. 2019. Classification hardness for supervised learners on 20 years of intrusion detection data. IEEE Access 7: 167455–167469. https://doi.org/10.1109/access.2019.2953451 .

Damasevicius, R., A. Venckauskas, S. Grigaliunas, J. Toldinas, N. Morkevicius, T. Aleliunas, and P. Smuikys. 2020. LITNET-2020: An annotated real-world network flow dataset for network intrusion detection. Electronics 9 (5): 23. https://doi.org/10.3390/electronics9050800 .

De Giovanni, A.L.D., and M. Pirra. 2020. On the determinants of data breaches: A cointegration analysis. Decisions in Economics and Finance . https://doi.org/10.1007/s10203-020-00301-y .

Deng, L., D. Li, X. Yao, and H. Wang. 2019. Retracted Article: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Computing 22 (4): 9889–9904. https://doi.org/10.1007/s10586-018-1847-2 .

Donkal, G., and G.K. Verma. 2018. A multimodal fusion based framework to reinforce IDS for securing Big Data environment using Spark. Journal of Information Security and Applications 43: 1–11. https://doi.org/10.1016/j.jisa.2018.10.001 .

Dunn, C., N. Moustafa, and B. Turnbull. 2020. Robustness evaluations of sustainable machine learning models against data Poisoning attacks in the Internet of Things. Sustainability 12 (16): 17. https://doi.org/10.3390/su12166434 .

Dwivedi, S., M. Vardhan, and S. Tripathi. 2021. Multi-parallel adaptive grasshopper optimization technique for detecting anonymous attacks in wireless networks. Wireless Personal Communications . https://doi.org/10.1007/s11277-021-08368-5 .

Dyson, B. 2020. COVID-19 crisis could be ‘watershed’ for cyber insurance, says Swiss Re exec. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/covid-19-crisis-could-be-watershed-for-cyber-insurance-says-swiss-re-exec-59197154 . Accessed 7 May 2020.

EIOPA. 2018. Understanding cyber insurance—a structured dialogue with insurance companies. https://www.eiopa.europa.eu/sites/default/files/publications/reports/eiopa_understanding_cyber_insurance.pdf . Accessed 28 May 2018

Elijah, A.V., A. Abdullah, N.Z. JhanJhi, M. Supramaniam, and O.B. Abdullateef. 2019. Ensemble and deep-learning methods for two-class and multi-attack anomaly intrusion detection: An empirical study. International Journal of Advanced Computer Science and Applications 10 (9): 520–528.

Eling, M., and K. Jung. 2018. Copula approaches for modeling cross-sectional dependence of data breach losses. Insurance Mathematics & Economics 82: 167–180. https://doi.org/10.1016/j.insmatheco.2018.07.003 .

Eling, M., and W. Schnell. 2016. What do we know about cyber risk and cyber risk insurance? Journal of Risk Finance 17 (5): 474–491. https://doi.org/10.1108/jrf-09-2016-0122 .

Eling, M., and J. Wirfs. 2019. What are the actual costs of cyber risk events? European Journal of Operational Research 272 (3): 1109–1119. https://doi.org/10.1016/j.ejor.2018.07.021 .

Eling, M. 2020. Cyber risk research in business and actuarial science. European Actuarial Journal 10 (2): 303–333.

Elmasry, W., A. Akbulut, and A.H. Zaim. 2019. Empirical study on multiclass classification-based network intrusion detection. Computational Intelligence 35 (4): 919–954. https://doi.org/10.1111/coin.12220 .

Elsaid, S.A., and N.S. Albatati. 2020. An optimized collaborative intrusion detection system for wireless sensor networks. Soft Computing 24 (16): 12553–12567. https://doi.org/10.1007/s00500-020-04695-0 .

Estepa, R., J.E. Díaz-Verdejo, A. Estepa, and G. Madinabeitia. 2020. How much training data is enough? A case study for HTTP anomaly-based intrusion detection. IEEE Access 8: 44410–44425. https://doi.org/10.1109/ACCESS.2020.2977591 .

European Council. 2021. Cybersecurity: how the EU tackles cyber threats. https://www.consilium.europa.eu/en/policies/cybersecurity/ . Accessed 10 May 2021

Falco, G. et al. 2019. Cyber risk research impeded by disciplinary barriers. Science (American Association for the Advancement of Science) 366 (6469): 1066–1069.

Fan, Z.J., Z.P. Tan, C.X. Tan, and X. Li. 2018. An improved integrated prediction method of cyber security situation based on spatial-time analysis. Journal of Internet Technology 19 (6): 1789–1800. https://doi.org/10.3966/160792642018111906015 .

Fang, Z.J., M.C. Xu, S.H. Xu, and T.Z. Hu. 2021. A framework for predicting data breach risk: Leveraging dependence to cope with sparsity. IEEE Transactions on Information Forensics and Security 16: 2186–2201. https://doi.org/10.1109/tifs.2021.3051804 .

Farkas, S., O. Lopez, and M. Thomas. 2021. Cyber claim analysis using Generalized Pareto regression trees with applications to insurance. Insurance: Mathematics and Economics 98: 92–105. https://doi.org/10.1016/j.insmatheco.2021.02.009 .

Farsi, H., A. Fanian, and Z. Taghiyarrenani. 2019. A novel online state-based anomaly detection system for process control networks. International Journal of Critical Infrastructure Protection 27: 11. https://doi.org/10.1016/j.ijcip.2019.100323 .

Ferrag, M.A., L. Maglaras, S. Moschoyiannis, and H. Janicke. 2020. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications 50: 19. https://doi.org/10.1016/j.jisa.2019.102419 .

Field, M. 2018. WannaCry cyber attack cost the NHS £92m as 19,000 appointments cancelled. https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/ . Accessed 9 May 2018.

FitchRatings. 2021. U.S. Cyber Insurance Market Update (Spike in Claims Leads to Decline in 2020 Underwriting Performance). https://www.fitchratings.com/research/insurance/us-cyber-insurance-market-update-spike-in-claims-leads-to-decline-in-2020-underwriting-performance-26-05-2021 .

Fossaceca, J.M., T.A. Mazzuchi, and S. Sarkani. 2015. MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of network intrusion detection. Expert Systems with Applications 42 (8): 4062–4080. https://doi.org/10.1016/j.eswa.2014.12.040 .

Franke, U., and J. Brynielsson. 2014. Cyber situational awareness–a systematic review of the literature. Computers & security 46: 18–31.

Freeha, K., K.J. Hwan, M. Lars, and M. Robin. 2021. Data breach management: An integrated risk model. Information & Management 58 (1): 103392. https://doi.org/10.1016/j.im.2020.103392 .

Ganeshan, R., and P. Rodrigues. 2020. Crow-AFL: Crow based adaptive fractional lion optimization approach for the intrusion detection. Wireless Personal Communications 111 (4): 2065–2089. https://doi.org/10.1007/s11277-019-06972-0 .

GAO. 2021. CYBER INSURANCE—Insurers and policyholders face challenges in an evolving market. https://www.gao.gov/assets/gao-21-477.pdf . Accessed 16 May 2021.

Garber, J. 2021. Colonial Pipeline fiasco foreshadows impact of Biden energy policy. https://www.foxbusiness.com/markets/colonial-pipeline-fiasco-foreshadows-impact-of-biden-energy-policy . Accessed 4 May 2021.

Gauthama Raman, M.R., N. Somu, S. Jagarapu, T. Manghnani, T. Selvam, K. Krithivasan, and V.S. Shankar Sriram. 2020. An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artificial Intelligence Review 53 (5): 3255–3286. https://doi.org/10.1007/s10462-019-09762-z .

Gavel, S., A.S. Raghuvanshi, and S. Tiwari. 2021. Distributed intrusion detection scheme using dual-axis dimensionality reduction for Internet of things (IoT). Journal of Supercomputing . https://doi.org/10.1007/s11227-021-03697-5 .

GDPR.EU. 2021. FAQ. https://gdpr.eu/faq/ . Accessed 10 May 2021.

Georgescu, T.M., B. Iancu, and M. Zurini. 2019. Named-entity-recognition-based automated system for diagnosing cybersecurity situations in IoT networks. Sensors (switzerland) . https://doi.org/10.3390/s19153380 .

Giudici, P., and E. Raffinetti. 2020. Cyber risk ordering with rank-based statistical models. AStA Advances in Statistical Analysis . https://doi.org/10.1007/s10182-020-00387-0 .

Goh, J., S. Adepu, K.N. Junejo, and A. Mathur. 2016. A dataset to support research in the design of secure water treatment systems. In CRITIS.

Gong, X.Y., J.L. Lu, Y.F. Zhou, H. Qiu, and R. He. 2021. Model uncertainty based annotation error fixing for web attack detection. Journal of Signal Processing Systems for Signal Image and Video Technology 93 (2–3): 187–199. https://doi.org/10.1007/s11265-019-01494-1 .

Goode, S., H. Hoehle, V. Venkatesh, and S.A. Brown. 2017. USER compensation as a data breach recovery action: An investigation of the sony playstation network breach. MIS Quarterly 41 (3): 703–727.

Guo, H., S. Huang, C. Huang, Z. Pan, M. Zhang, and F. Shi. 2020. File entropy signal analysis combined with wavelet decomposition for malware classification. IEEE Access 8: 158961–158971. https://doi.org/10.1109/ACCESS.2020.3020330 .

Habib, M., I. Aljarah, and H. Faris. 2020. A Modified multi-objective particle swarm optimizer-based Lévy flight: An approach toward intrusion detection in Internet of Things. Arabian Journal for Science and Engineering 45 (8): 6081–6108. https://doi.org/10.1007/s13369-020-04476-9 .

Hajj, S., R. El Sibai, J.B. Abdo, J. Demerjian, A. Makhoul, and C. Guyeux. 2021. Anomaly-based intrusion detection systems: The requirements, methods, measurements, and datasets. Transactions on Emerging Telecommunications Technologies 32 (4): 36. https://doi.org/10.1002/ett.4240 .

Heartfield, R., G. Loukas, A. Bezemskij, and E. Panaousis. 2021. Self-configurable cyber-physical intrusion detection for smart homes using reinforcement learning. IEEE Transactions on Information Forensics and Security 16: 1720–1735. https://doi.org/10.1109/tifs.2020.3042049 .

Hemo, B., T. Gafni, K. Cohen, and Q. Zhao. 2020. Searching for anomalies over composite hypotheses. IEEE Transactions on Signal Processing 68: 1181–1196. https://doi.org/10.1109/TSP.2020.2971438

Hindy, H., D. Brosset, E. Bayne, A.K. Seeam, C. Tachtatzis, R. Atkinson, and X. Bellekens. 2020. A taxonomy of network threats and the effect of current datasets on intrusion detection systems. IEEE Access 8: 104650–104675. https://doi.org/10.1109/ACCESS.2020.3000179 .

Hong, W., D. Huang, C. Chen, and J. Lee. 2020. Towards accurate and efficient classification of power system contingencies and cyber-attacks using recurrent neural networks. IEEE Access 8: 123297–123309. https://doi.org/10.1109/ACCESS.2020.3007609 .

Husák, M., M. Zádník, V. Bartos, and P. Sokol. 2020. Dataset of intrusion detection alerts from a sharing platform. Data in Brief 33: 106530.

IBM Security. 2020. Cost of a Data breach Report. https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf . Accessed 19 May 2021.

IEEE. 2021. IEEE Quick Facts. https://www.ieee.org/about/at-a-glance.html . Accessed 11 May 2021.

Kilincer, I.F., F. Ertam, and S. Abdulkadir. 2021. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks 188: 107840. https://doi.org/10.1016/j.comnet.2021.107840 .

Jaber, A.N., and S. Ul Rehman. 2020. FCM-SVM based intrusion detection system for cloud computing environment. Cluster Computing—the Journal of Networks Software Tools and Applications 23 (4): 3221–3231. https://doi.org/10.1007/s10586-020-03082-6 .

Jacobs, J., S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid. 2019. Exploit prediction scoring system (epss). arXiv:1908.04856

Jacobsen, A. et al. 2020. FAIR principles: Interpretations and implementation considerations. Data Intelligence 2 (1–2): 10–29. https://doi.org/10.1162/dint_r_00024 .

Jahromi, A.N., S. Hashemi, A. Dehghantanha, R.M. Parizi, and K.K.R. Choo. 2020. An enhanced stacked LSTM method with no random initialization for malware threat hunting in safety and time-critical systems. IEEE Transactions on Emerging Topics in Computational Intelligence 4 (5): 630–640. https://doi.org/10.1109/TETCI.2019.2910243 .

Jang, S., S. Li, and Y. Sung. 2020. FastText-based local feature visualization algorithm for merged image-based malware classification framework for cyber security and cyber defense. Mathematics 8 (3): 13. https://doi.org/10.3390/math8030460 .

Javeed, D., T.H. Gao, and M.T. Khan. 2021. SDN-enabled hybrid DL-driven framework for the detection of emerging cyber threats in IoT. Electronics 10 (8): 16. https://doi.org/10.3390/electronics10080918 .

Johnson, P., D. Gorton, R. Lagerstrom, and M. Ekstedt. 2016. Time between vulnerability disclosures: A measure of software product vulnerability. Computers & Security 62: 278–295. https://doi.org/10.1016/j.cose.2016.08.004 .

Johnson, P., R. Lagerström, M. Ekstedt, and U. Franke. 2018. Can the common vulnerability scoring system be trusted? A Bayesian analysis. IEEE Transactions on Dependable and Secure Computing 15 (6): 1002–1015. https://doi.org/10.1109/TDSC.2016.2644614 .

Junger, M., V. Wang, and M. Schlömer. 2020. Fraud against businesses both online and offline: Crime scripts, business characteristics, efforts, and benefits. Crime Science 9 (1): 13. https://doi.org/10.1186/s40163-020-00119-4 .

Kalutarage, H.K., H.N. Nguyen, and S.A. Shaikh. 2017. Towards a threat assessment framework for apps collusion. Telecommunication Systems 66 (3): 417–430. https://doi.org/10.1007/s11235-017-0296-1 .

Kamarudin, M.H., C. Maple, T. Watson, and N.S. Safa. 2017. A LogitBoost-based algorithm for detecting known and unknown web attacks. IEEE Access 5: 26190–26200. https://doi.org/10.1109/ACCESS.2017.2766844 .

Kasongo, S.M., and Y.X. Sun. 2020. A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Computers & Security 92: 15. https://doi.org/10.1016/j.cose.2020.101752 .

Keserwani, P.K., M.C. Govil, E.S. Pilli, and P. Govil. 2021. A smart anomaly-based intrusion detection system for the Internet of Things (IoT) network using GWO–PSO–RF model. Journal of Reliable Intelligent Environments 7 (1): 3–21. https://doi.org/10.1007/s40860-020-00126-x .

Keshk, M., E. Sitnikova, N. Moustafa, J. Hu, and I. Khalil. 2021. An integrated framework for privacy-preserving based anomaly detection for cyber-physical systems. IEEE Transactions on Sustainable Computing 6 (1): 66–79. https://doi.org/10.1109/TSUSC.2019.2906657 .

Khan, I.A., D.C. Pi, A.K. Bhatia, N. Khan, W. Haider, and A. Wahab. 2020. Generating realistic IoT-based IDS dataset centred on fuzzy qualitative modelling for cyber-physical systems. Electronics Letters 56 (9): 441–443. https://doi.org/10.1049/el.2019.4158 .

Khraisat, A., I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab. 2020. Hybrid intrusion detection system based on the stacking ensemble of C5 decision tree classifier and one class support vector machine. Electronics 9 (1): 18. https://doi.org/10.3390/electronics9010173 .

Khraisat, A., I. Gondal, P. Vamplew, and J. Kamruzzaman. 2019. Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity 2 (1): 20. https://doi.org/10.1186/s42400-019-0038-7 .

Kilincer, I.F., F. Ertam, and A. Sengur. 2021. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks 188: 16. https://doi.org/10.1016/j.comnet.2021.107840 .

Kim, D., and H.K. Kim. 2019. Automated dataset generation system for collaborative research of cyber threat analysis. Security and Communication Networks 2019: 10. https://doi.org/10.1155/2019/6268476 .

Kim, G., C. Lee, J. Jo, and H. Lim. 2020. Automatic extraction of named entities of cyber threats using a deep Bi-LSTM-CRF network. International Journal of Machine Learning and Cybernetics 11 (10): 2341–2355. https://doi.org/10.1007/s13042-020-01122-6 .

Kirubavathi, G., and R. Anitha. 2016. Botnet detection via mining of traffic flow characteristics. Computers & Electrical Engineering 50: 91–101. https://doi.org/10.1016/j.compeleceng.2016.01.012 .

Kiwia, D., A. Dehghantanha, K.K.R. Choo, and J. Slaughter. 2018. A cyber kill chain based taxonomy of banking Trojans for evolutionary computational intelligence. Journal of Computational Science 27: 394–409. https://doi.org/10.1016/j.jocs.2017.10.020 .

Koroniotis, N., N. Moustafa, and E. Sitnikova. 2020. A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework. Future Generation Computer Systems 110: 91–106. https://doi.org/10.1016/j.future.2020.03.042 .

Kruse, C.S., B. Frederick, T. Jacobson, and D. Kyle Monticone. 2017. Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care 25 (1): 1–10.

Kshetri, N. 2018. The economics of cyber-insurance. IT Professional 20 (6): 9–14. https://doi.org/10.1109/MITP.2018.2874210 .

Kumar, R., P. Kumar, R. Tripathi, G.P. Gupta, T.R. Gadekallu, and G. Srivastava. 2021. SP2F: A secured privacy-preserving framework for smart agricultural Unmanned Aerial Vehicles. Computer Networks . https://doi.org/10.1016/j.comnet.2021.107819 .

Kumar, R., and R. Tripathi. 2021. DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Transactions on Emerging Telecommunications Technologies 32 (4): 27. https://doi.org/10.1002/ett.4222 .

Laso, P.M., D. Brosset, and J. Puentes. 2017. Dataset of anomalies and malicious acts in a cyber-physical subsystem. Data in Brief 14: 186–191. https://doi.org/10.1016/j.dib.2017.07.038 .

Lee, J., J. Kim, I. Kim, and K. Han. 2019. Cyber threat detection based on artificial neural networks using event profiles. IEEE Access 7: 165607–165626. https://doi.org/10.1109/ACCESS.2019.2953095 .

Lee, S.J., P.D. Yoo, A.T. Asyhari, Y. Jhi, L. Chermak, C.Y. Yeun, and K. Taha. 2020. IMPACT: Impersonation attack detection via edge computing using deep Autoencoder and feature abstraction. IEEE Access 8: 65520–65529. https://doi.org/10.1109/ACCESS.2020.2985089 .

Leong, Y.-Y., and Y.-C. Chen. 2020. Cyber risk cost and management in IoT devices-linked health insurance. The Geneva Papers on Risk and Insurance—Issues and Practice 45 (4): 737–759. https://doi.org/10.1057/s41288-020-00169-4 .

Levi, M. 2017. Assessing the trends, scale and nature of economic cybercrimes: overview and Issues: In Cybercrimes, cybercriminals and their policing, in crime, law and social change. Crime, Law and Social Change 67 (1): 3–20. https://doi.org/10.1007/s10611-016-9645-3 .

Li, C., K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi. 2019a. Android malware detection based on factorization machine. IEEE Access 7: 184008–184019. https://doi.org/10.1109/ACCESS.2019.2958927 .

Li, D.Q., and Q.M. Li. 2020. Adversarial deep ensemble: evasion attacks and defenses for malware detection. IEEE Transactions on Information Forensics and Security 15: 3886–3900. https://doi.org/10.1109/tifs.2020.3003571 .

Li, D.Q., Q.M. Li, Y.F. Ye, and S.H. Xu. 2021. A framework for enhancing deep neural networks against adversarial malware. IEEE Transactions on Network Science and Engineering 8 (1): 736–750. https://doi.org/10.1109/tnse.2021.3051354 .

Li, R.H., C. Zhang, C. Feng, X. Zhang, and C.J. Tang. 2019b. Locating vulnerability in binaries using deep neural networks. IEEE Access 7: 134660–134676. https://doi.org/10.1109/access.2019.2942043 .

Li, X., M. Xu, P. Vijayakumar, N. Kumar, and X. Liu. 2020. Detection of low-frequency and multi-stage attacks in industrial Internet of Things. IEEE Transactions on Vehicular Technology 69 (8): 8820–8831. https://doi.org/10.1109/TVT.2020.2995133 .

Liu, H.Y., and B. Lang. 2019. Machine learning and deep learning methods for intrusion detection systems: A survey. Applied Sciences—Basel 9 (20): 28. https://doi.org/10.3390/app9204396 .

Lopez-Martin, M., B. Carro, and A. Sanchez-Esguevillas. 2020. Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications . https://doi.org/10.1016/j.eswa.2019.112963 .

Loukas, G., D. Gan, and Tuan Vuong. 2013. A review of cyber threats and defence approaches in emergency management. Future Internet 5: 205–236.

Luo, C.C., S. Su, Y.B. Sun, Q.J. Tan, M. Han, and Z.H. Tian. 2020. A convolution-based system for malicious URLs detection. CMC—Computers Materials Continua 62 (1): 399–411.

Mahbooba, B., M. Timilsina, R. Sahal, and M. Serrano. 2021. Explainable artificial intelligence (XAI) to enhance trust management in intrusion detection systems using decision tree model. Complexity 2021: 11. https://doi.org/10.1155/2021/6634811 .

Mahdavifar, S., and A.A. Ghorbani. 2020. DeNNeS: Deep embedded neural network expert system for detecting cyber attacks. Neural Computing & Applications 32 (18): 14753–14780. https://doi.org/10.1007/s00521-020-04830-w .

Mahfouz, A., A. Abuhussein, D. Venugopal, and S. Shiva. 2020. Ensemble classifiers for network intrusion detection using a novel network attack dataset. Future Internet 12 (11): 1–19. https://doi.org/10.3390/fi12110180 .

Maleks Smith, Z., E. Lostri, and J.A. Lewis. 2020. The hidden costs of cybercrime. https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf . Accessed 16 May 2021.

Malik, J., A. Akhunzada, I. Bibi, M. Imran, A. Musaddiq, and S.W. Kim. 2020. Hybrid deep learning: An efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access 8: 134695–134706. https://doi.org/10.1109/ACCESS.2020.3009849 .

Manimurugan, S. 2020. IoT-Fog-Cloud model for anomaly detection using improved Naive Bayes and principal component analysis. Journal of Ambient Intelligence and Humanized Computing . https://doi.org/10.1007/s12652-020-02723-3 .

Martin, A., R. Lara-Cabrera, and D. Camacho. 2019. Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. Information Fusion 52: 128–142. https://doi.org/10.1016/j.inffus.2018.12.006 .

Mauro, M.D., G. Galatro, and A. Liotta. 2020. Experimental review of neural-based approaches for network intrusion management. IEEE Transactions on Network and Service Management 17 (4): 2480–2495. https://doi.org/10.1109/TNSM.2020.3024225 .

McLeod, A., and D. Dolezel. 2018. Cyber-analytics: Modeling factors associated with healthcare data breaches. Decision Support Systems 108: 57–68. https://doi.org/10.1016/j.dss.2018.02.007 .

Meira, J., R. Andrade, I. Praca, J. Carneiro, V. Bolon-Canedo, A. Alonso-Betanzos, and G. Marreiros. 2020. Performance evaluation of unsupervised techniques in cyber-attack anomaly detection. Journal of Ambient Intelligence and Humanized Computing 11 (11): 4477–4489. https://doi.org/10.1007/s12652-019-01417-9 .

Miao, Y., J. Ma, X. Liu, J. Weng, H. Li, and H. Li. 2019. Lightweight fine-grained search over encrypted data in Fog computing. IEEE Transactions on Services Computing 12 (5): 772–785. https://doi.org/10.1109/TSC.2018.2823309 .

Miller, C., and C. Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (S 91).

Mireles, J.D., E. Ficke, J.H. Cho, P. Hurley, and S.H. Xu. 2019. Metrics towards measuring cyber agility. IEEE Transactions on Information Forensics and Security 14 (12): 3217–3232. https://doi.org/10.1109/tifs.2019.2912551 .

Mishra, N., and S. Pandya. 2021. Internet of Things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review. IEEE Access . https://doi.org/10.1109/ACCESS.2021.3073408 .

Monshizadeh, M., V. Khatri, B.G. Atli, R. Kantola, and Z. Yan. 2019. Performance evaluation of a combined anomaly detection platform. IEEE Access 7: 100964–100978. https://doi.org/10.1109/ACCESS.2019.2930832 .

Moreno, V.C., G. Reniers, E. Salzano, and V. Cozzani. 2018. Analysis of physical and cyber security-related events in the chemical and process industry. Process Safety and Environmental Protection 116: 621–631. https://doi.org/10.1016/j.psep.2018.03.026 .

Moro, E.D. 2020. Towards an economic cyber loss index for parametric cover based on IT security indicator: A preliminary analysis. Risks . https://doi.org/10.3390/risks8020045 .

Moustafa, N., E. Adi, B. Turnbull, and J. Hu. 2018. A new threat intelligence scheme for safeguarding industry 4.0 systems. IEEE Access 6: 32910–32924. https://doi.org/10.1109/ACCESS.2018.2844794 .

Moustakidis, S., and P. Karlsson. 2020. A novel feature extraction methodology using Siamese convolutional neural networks for intrusion detection. Cybersecurity . https://doi.org/10.1186/s42400-020-00056-4 .

Mukhopadhyay, A., S. Chatterjee, K.K. Bagchi, P.J. Kirs, and G.K. Shukla. 2019. Cyber Risk Assessment and Mitigation (CRAM) framework using Logit and Probit models for cyber insurance. Information Systems Frontiers 21 (5): 997–1018. https://doi.org/10.1007/s10796-017-9808-5 .

Murphey, H. 2021a. Biden signs executive order to strengthen US cyber security. https://www.ft.com/content/4d808359-b504-4014-85f6-68e7a2851bf1?accessToken=zwAAAXl0_ifgkc9NgINZtQRAFNOF9mjnooUb8Q.MEYCIQDw46SFWsMn1iyuz3kvgAmn6mxc0rIVfw10Lg1ovJSfJwIhAK2X2URzfSqHwIS7ddRCvSt2nGC2DcdoiDTG49-4TeEt&sharetype=gift?token=fbcd6323-1ecf-4fc3-b136-b5b0dd6a8756 . Accessed 7 May 2021.

Murphey, H. 2021b. Millions of connected devices have security flaws, study shows. https://www.ft.com/content/0bf92003-926d-4dee-87d7-b01f7c3e9621?accessToken=zwAAAXnA7f2Ikc8L-SADkm1N7tOH17AffD6WIQ.MEQCIDjBuROvhmYV0Mx3iB0cEV7m5oND1uaCICxJu0mzxM0PAiBam98q9zfHiTB6hKGr1gGl0Azt85yazdpX9K5sI8se3Q&sharetype=gift?token=2538218d-77d9-4dd3-9649-3cb556a34e51 . Accessed 6 May 2021.

Murugesan, V., M. Shalinie, and M.H. Yang. 2018. Design and analysis of hybrid single packet IP traceback scheme. IET Networks 7 (3): 141–151. https://doi.org/10.1049/iet-net.2017.0115 .

Mwitondi, K.S., and S.A. Zargari. 2018. An iterative multiple sampling method for intrusion detection. Information Security Journal 27 (4): 230–239. https://doi.org/10.1080/19393555.2018.1539790 .

Neto, N.N., S. Madnick, A.M.G. De Paula, and N.M. Borges. 2021. Developing a global data breach database and the challenges encountered. ACM Journal of Data and Information Quality 13 (1): 33. https://doi.org/10.1145/3439873 .

Nurse, J.R.C., L. Axon, A. Erola, I. Agrafiotis, M. Goldsmith, and S. Creese. 2020. The data that drives cyber insurance: A study into the underwriting and claims processes. In 2020 International conference on cyber situational awareness, data analytics and assessment (CyberSA), 15–19 June 2020.

Oliveira, N., I. Praca, E. Maia, and O. Sousa. 2021. Intelligent cyber attack detection and classification for network-based intrusion detection systems. Applied Sciences—Basel 11 (4): 21. https://doi.org/10.3390/app11041674 .

Page, M.J. et al. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews 10 (1): 89. https://doi.org/10.1186/s13643-021-01626-4 .

Pajouh, H.H., R. Javidan, R. Khayami, A. Dehghantanha, and K.R. Choo. 2019. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks. IEEE Transactions on Emerging Topics in Computing 7 (2): 314–323. https://doi.org/10.1109/TETC.2016.2633228 .

Parra, G.D., P. Rad, K.K.R. Choo, and N. Beebe. 2020. Detecting Internet of Things attacks using distributed deep learning. Journal of Network and Computer Applications 163: 13. https://doi.org/10.1016/j.jnca.2020.102662 .

Paté-Cornell, M.E., M. Kuypers, M. Smith, and P. Keller. 2018. Cyber risk management for critical infrastructure: A risk analysis model and three case studies. Risk Analysis 38 (2): 226–241. https://doi.org/10.1111/risa.12844 .

Pooser, D.M., M.J. Browne, and O. Arkhangelska. 2018. Growth in the perception of cyber risk: evidence from U.S. P&C Insurers. The Geneva Papers on Risk and Insurance—Issues and Practice 43 (2): 208–223. https://doi.org/10.1057/s41288-017-0077-9 .

Pu, G., L. Wang, J. Shen, and F. Dong. 2021. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Science and Technology 26 (2): 146–153. https://doi.org/10.26599/TST.2019.9010051 .

Qiu, J., W. Luo, L. Pan, Y. Tai, J. Zhang, and Y. Xiang. 2019. Predicting the impact of android malicious samples via machine learning. IEEE Access 7: 66304–66316. https://doi.org/10.1109/ACCESS.2019.2914311 .

Qu, X., L. Yang, K. Guo, M. Sun, L. Ma, T. Feng, S. Ren, K. Li, and X. Ma. 2020. Direct batch growth hierarchical self-organizing mapping based on statistics for efficient network intrusion detection. IEEE Access 8: 42251–42260. https://doi.org/10.1109/ACCESS.2020.2976810 .

Rahman, Md.S., S. Halder, Md. Ashraf Uddin, and U.K. Acharjee. 2021. An efficient hybrid system for anomaly detection in social networks. Cybersecurity 4 (1): 10. https://doi.org/10.1186/s42400-021-00074-w .

Ramaiah, M., V. Chandrasekaran, V. Ravi, and N. Kumar. 2021. An intrusion detection system using optimized deep neural network architecture. Transactions on Emerging Telecommunications Technologies 32 (4): 17. https://doi.org/10.1002/ett.4221 .

Raman, M.R.G., K. Kannan, S.K. Pal, and V.S.S. Sriram. 2016. Rough set-hypergraph-based feature selection approach for intrusion detection systems. Defence Science Journal 66 (6): 612–617. https://doi.org/10.14429/dsj.66.10802 .

Rathore, S., J.H. Park. 2018. Semi-supervised learning based distributed attack detection framework for IoT. Applied Soft Computing 72: 79–89. https://doi.org/10.1016/j.asoc.2018.05.049 .

Romanosky, S., L. Ablon, A. Kuehn, and T. Jones. 2019. Content analysis of cyber insurance policies: How do carriers price cyber risk? Journal of Cybersecurity (oxford) 5 (1): tyz002.

Sarabi, A., P. Naghizadeh, Y. Liu, and M. Liu. 2016. Risky business: Fine-grained data breach prediction using business profiles. Journal of Cybersecurity 2 (1): 15–28. https://doi.org/10.1093/cybsec/tyw004 .

Sardi, Alberto, Alessandro Rizzi, Enrico Sorano, and Anna Guerrieri. 2021. Cyber risk in health facilities: A systematic literature review. Sustainability 12 (17): 7002.

Sarker, Iqbal H., A.S.M. Kayes, Shahriar Badsha, Hamed Alqahtani, Paul Watters, and Alex Ng. 2020. Cybersecurity data science: An overview from machine learning perspective. Journal of Big Data 7 (1): 41. https://doi.org/10.1186/s40537-020-00318-5 .

Scopus. 2021. Factsheet. https://www.elsevier.com/__data/assets/pdf_file/0017/114533/Scopus_GlobalResearch_Factsheet2019_FINAL_WEB.pdf . Accessed 11 May 2021.

Sentuna, A., A. Alsadoon, P.W.C. Prasad, M. Saadeh, and O.H. Alsadoon. 2021. A novel Enhanced Naïve Bayes Posterior Probability (ENBPP) using machine learning: Cyber threat analysis. Neural Processing Letters 53 (1): 177–209. https://doi.org/10.1007/s11063-020-10381-x .

Shaukat, K., S.H. Luo, V. Varadharajan, I.A. Hameed, S. Chen, D.X. Liu, and J.M. Li. 2020. Performance comparison and current challenges of using machine learning techniques in cybersecurity. Energies 13 (10): 27. https://doi.org/10.3390/en13102509 .

Sheehan, B., F. Murphy, M. Mullins, and C. Ryan. 2019. Connected and autonomous vehicles: A cyber-risk classification framework. Transportation Research Part a: Policy and Practice 124: 523–536. https://doi.org/10.1016/j.tra.2018.06.033 .

Sheehan, B., F. Murphy, A.N. Kia, and R. Kiely. 2021. A quantitative bow-tie cyber risk classification and assessment framework. Journal of Risk Research 24 (12): 1619–1638.

Shlomo, A., M. Kalech, and R. Moskovitch. 2021. Temporal pattern-based malicious activity detection in SCADA systems. Computers & Security 102: 17. https://doi.org/10.1016/j.cose.2020.102153 .

Singh, K.J., and T. De. 2020. Efficient classification of DDoS attacks using an ensemble feature selection algorithm. Journal of Intelligent Systems 29 (1): 71–83. https://doi.org/10.1515/jisys-2017-0472 .

Skrjanc, I., S. Ozawa, T. Ban, and D. Dovzan. 2018. Large-scale cyber attacks monitoring using Evolving Cauchy Possibilistic Clustering. Applied Soft Computing 62: 592–601. https://doi.org/10.1016/j.asoc.2017.11.008 .

Smart, W. 2018. Lessons learned review of the WannaCry Ransomware Cyber Attack. https://www.england.nhs.uk/wp-content/uploads/2018/02/lessons-learned-review-wannacry-ransomware-cyber-attack-cio-review.pdf . Accessed 7 May 2021.

Sornette, D., T. Maillart, and W. Kröger. 2013. Exploring the limits of safety analysis in complex technological systems. International Journal of Disaster Risk Reduction 6: 59–66. https://doi.org/10.1016/j.ijdrr.2013.04.002 .

Sovacool, B.K. 2008. The costs of failure: A preliminary assessment of major energy accidents, 1907–2007. Energy Policy 36 (5): 1802–1820. https://doi.org/10.1016/j.enpol.2008.01.040 .

SpringerLink. 2021. Journal Search. https://rd.springer.com/search?facet-content-type=%22Journal%22 . Accessed 11 May 2021.

Stojanovic, B., K. Hofer-Schmitz, and U. Kleb. 2020. APT datasets and attack modeling for automated detection methods: A review. Computers & Security 92: 19. https://doi.org/10.1016/j.cose.2020.101734 .

Subroto, A., and A. Apriyana. 2019. Cyber risk prediction through social media big data analytics and statistical machine learning. Journal of Big Data . https://doi.org/10.1186/s40537-019-0216-1 .

Tan, Z., A. Jamdagni, X. He, P. Nanda, R.P. Liu, and J. Hu. 2015. Detection of denial-of-service attacks based on computer vision techniques. IEEE Transactions on Computers 64 (9): 2519–2533. https://doi.org/10.1109/TC.2014.2375218 .

Tidy, J. 2021. Irish cyber-attack: Hackers bail out Irish health service for free. https://www.bbc.com/news/world-europe-57197688 . Accessed 6 May 2021.

Tuncer, T., F. Ertam, and S. Dogan. 2020. Automated malware recognition method based on local neighborhood binary pattern. Multimedia Tools and Applications 79 (37–38): 27815–27832. https://doi.org/10.1007/s11042-020-09376-6 .

Uhm, Y., and W. Pak. 2021. Service-aware two-level partitioning for machine learning-based network intrusion detection with high performance and high scalability. IEEE Access 9: 6608–6622. https://doi.org/10.1109/ACCESS.2020.3048900 .

Ulven, J.B., and G. Wangen. 2021. A systematic review of cybersecurity risks in higher education. Future Internet 13 (2): 1–40. https://doi.org/10.3390/fi13020039 .

Vaccari, I., G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso. 2020. MQTTset, a new dataset for machine learning techniques on MQTT. Sensors 20 (22): 17. https://doi.org/10.3390/s20226578 .

Valeriano, B., and R.C. Maness. 2014. The dynamics of cyber conflict between rival antagonists, 2001–11. Journal of Peace Research 51 (3): 347–360. https://doi.org/10.1177/0022343313518940 .

Varghese, J.E., and B. Muniyal. 2021. An Efficient IDS framework for DDoS attacks in SDN environment. IEEE Access 9: 69680–69699. https://doi.org/10.1109/ACCESS.2021.3078065 .

Varsha, M. V., P. Vinod, K.A. Dhanya. 2017 Identification of malicious android app using manifest and opcode features. Journal of Computer Virology and Hacking Techniques 13 (2): 125–138. https://doi.org/10.1007/s11416-016-0277-z

Velliangiri, S., and H.M. Pandey. 2020. Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms. Future Generation Computer Systems—the International Journal of Escience 110: 80–90. https://doi.org/10.1016/j.future.2020.03.049 .

Verma, A., and V. Ranga. 2020. Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications 111 (4): 2287–2310. https://doi.org/10.1007/s11277-019-06986-8 .

Vidros, S., C. Kolias, G. Kambourakis, and L. Akoglu. 2017. Automatic detection of online recruitment frauds: Characteristics, methods, and a public dataset. Future Internet 9 (1): 19. https://doi.org/10.3390/fi9010006 .

Vinayakumar, R., M. Alazab, K.P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman. 2019. Deep learning approach for intelligent intrusion detection system. IEEE Access 7: 41525–41550. https://doi.org/10.1109/access.2019.2895334 .

Walker-Roberts, S., M. Hammoudeh, O. Aldabbas, M. Aydin, and A. Dehghantanha. 2020. Threats on the horizon: Understanding security threats in the era of cyber-physical systems. Journal of Supercomputing 76 (4): 2643–2664. https://doi.org/10.1007/s11227-019-03028-9 .

Web of Science. 2021. Web of Science: Science Citation Index Expanded. https://clarivate.com/webofsciencegroup/solutions/webofscience-scie/ . Accessed 11 May 2021.

World Economic Forum. 2020. WEF Global Risk Report. http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf . Accessed 13 May 2020.

Xin, Y., L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and C. Wang. 2018. Machine learning and deep learning methods for cybersecurity. IEEE Access 6: 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950 .

Xu, C., J. Zhang, K. Chang, and C. Long. 2013. Uncovering collusive spammers in Chinese review websites. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management.

Yang, J., T. Li, G. Liang, W. He, and Y. Zhao. 2019. A Simple recurrent unit model based intrusion detection system with DCGAN. IEEE Access 7: 83286–83296. https://doi.org/10.1109/ACCESS.2019.2922692 .

Yuan, B.G., J.F. Wang, D. Liu, W. Guo, P. Wu, and X.H. Bao. 2020. Byte-level malware classification based on Markov images and deep learning. Computers & Security 92: 12. https://doi.org/10.1016/j.cose.2020.101740 .

Zhang, S., X.M. Ou, and D. Caragea. 2015. Predicting cyber risks through national vulnerability database. Information Security Journal 24 (4–6): 194–206. https://doi.org/10.1080/19393555.2015.1111961 .

Zhang, Y., P. Li, and X. Wang. 2019. Intrusion detection for IoT based on improved genetic algorithm and deep belief network. IEEE Access 7: 31711–31722.

Zheng, Muwei, Hannah Robbins, Zimo Chai, Prakash Thapa, and Tyler Moore. 2018. Cybersecurity research datasets: taxonomy and empirical analysis. In 11th {USENIX} workshop on cyber security experimentation and test ({CSET} 18).

Zhou, X., W. Liang, S. Shimizu, J. Ma, and Q. Jin. 2021. Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Transactions on Industrial Informatics 17 (8): 5790–5798. https://doi.org/10.1109/TII.2020.3047675 .

Zhou, Y.Y., G. Cheng, S.Q. Jiang, and M. Dai. 2020. Building an efficient intrusion detection system based on feature selection and ensemble classifier. Computer Networks 174: 17. https://doi.org/10.1016/j.comnet.2020.107247 .

Download references

Open Access funding provided by the IReL Consortium.

Author information

Authors and affiliations.

University of Limerick, Limerick, Ireland

Frank Cremer, Barry Sheehan, Arash N. Kia, Martin Mullins & Finbarr Murphy

TH Köln University of Applied Sciences, Cologne, Germany

Michael Fortmann & Stefan Materne

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Barry Sheehan .

Ethics declarations

Conflict of interest.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 334 kb)

Supplementary file1 (docx 418 kb), rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and Permissions

About this article

Cremer, F., Sheehan, B., Fortmann, M. et al. Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap Risk Insur Issues Pract 47 , 698–736 (2022). https://doi.org/10.1057/s41288-022-00266-6

Download citation

Received : 15 June 2021

Accepted : 20 January 2022

Published : 17 February 2022

Issue Date : July 2022

DOI : https://doi.org/10.1057/s41288-022-00266-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Cyber insurance
  • Systematic review
  • Cybersecurity
  • Find a journal
  • Publish with us

cyber security IEEE PAPERS AND PROJECTS-2020

the protection of computer systems and networks from the theft of or damage to their hardware, software, or electronic data, as well as from the disruption or misdirection of the services they provide.

FREE IEEE PAPER AND PROJECTS

Ieee projects 2022, seminar reports, free ieee projects ieee papers.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Cyber risk and cybersecurity: a systematic review of data availability

Frank cremer.

1 University of Limerick, Limerick, Ireland

Barry Sheehan

Michael fortmann.

2 TH Köln University of Applied Sciences, Cologne, Germany

Arash N. Kia

Martin mullins, finbarr murphy, stefan materne, associated data.

Cybercrime is estimated to have cost the global economy just under USD 1 trillion in 2020, indicating an increase of more than 50% since 2018. With the average cyber insurance claim rising from USD 145,000 in 2019 to USD 359,000 in 2020, there is a growing necessity for better cyber information sources, standardised databases, mandatory reporting and public awareness. This research analyses the extant academic and industry literature on cybersecurity and cyber risk management with a particular focus on data availability. From a preliminary search resulting in 5219 cyber peer-reviewed studies, the application of the systematic methodology resulted in 79 unique datasets. We posit that the lack of available data on cyber risk poses a serious problem for stakeholders seeking to tackle this issue. In particular, we identify a lacuna in open databases that undermine collective endeavours to better manage this set of risks. The resulting data evaluation and categorisation will support cybersecurity researchers and the insurance industry in their efforts to comprehend, metricise and manage cyber risks.

Supplementary Information

The online version contains supplementary material available at 10.1057/s41288-022-00266-6.

Introduction

Globalisation, digitalisation and smart technologies have escalated the propensity and severity of cybercrime. Whilst it is an emerging field of research and industry, the importance of robust cybersecurity defence systems has been highlighted at the corporate, national and supranational levels. The impacts of inadequate cybersecurity are estimated to have cost the global economy USD 945 billion in 2020 (Maleks Smith et al. 2020 ). Cyber vulnerabilities pose significant corporate risks, including business interruption, breach of privacy and financial losses (Sheehan et al. 2019 ). Despite the increasing relevance for the international economy, the availability of data on cyber risks remains limited. The reasons for this are many. Firstly, it is an emerging and evolving risk; therefore, historical data sources are limited (Biener et al. 2015 ). It could also be due to the fact that, in general, institutions that have been hacked do not publish the incidents (Eling and Schnell 2016 ). The lack of data poses challenges for many areas, such as research, risk management and cybersecurity (Falco et al. 2019 ). The importance of this topic is demonstrated by the announcement of the European Council in April 2021 that a centre of excellence for cybersecurity will be established to pool investments in research, technology and industrial development. The goal of this centre is to increase the security of the internet and other critical network and information systems (European Council 2021 ).

This research takes a risk management perspective, focusing on cyber risk and considering the role of cybersecurity and cyber insurance in risk mitigation and risk transfer. The study reviews the existing literature and open data sources related to cybersecurity and cyber risk. This is the first systematic review of data availability in the general context of cyber risk and cybersecurity. By identifying and critically analysing the available datasets, this paper supports the research community by aggregating, summarising and categorising all available open datasets. In addition, further information on datasets is attached to provide deeper insights and support stakeholders engaged in cyber risk control and cybersecurity. Finally, this research paper highlights the need for open access to cyber-specific data, without price or permission barriers.

The identified open data can support cyber insurers in their efforts on sustainable product development. To date, traditional risk assessment methods have been untenable for insurance companies due to the absence of historical claims data (Sheehan et al. 2021 ). These high levels of uncertainty mean that cyber insurers are more inclined to overprice cyber risk cover (Kshetri 2018 ). Combining external data with insurance portfolio data therefore seems to be essential to improve the evaluation of the risk and thus lead to risk-adjusted pricing (Bessy-Roland et al. 2021 ). This argument is also supported by the fact that some re/insurers reported that they are working to improve their cyber pricing models (e.g. by creating or purchasing databases from external providers) (EIOPA 2018 ). Figure  1 provides an overview of pricing tools and factors considered in the estimation of cyber insurance based on the findings of EIOPA ( 2018 ) and the research of Romanosky et al. ( 2019 ). The term cyber risk refers to all cyber risks and their potential impact.

An external file that holds a picture, illustration, etc.
Object name is 41288_2022_266_Fig1_HTML.jpg

An overview of the current cyber insurance informational and methodological landscape, adapted from EIOPA ( 2018 ) and Romanosky et al. ( 2019 )

Besides the advantage of risk-adjusted pricing, the availability of open datasets helps companies benchmark their internal cyber posture and cybersecurity measures. The research can also help to improve risk awareness and corporate behaviour. Many companies still underestimate their cyber risk (Leong and Chen 2020 ). For policymakers, this research offers starting points for a comprehensive recording of cyber risks. Although in many countries, companies are obliged to report data breaches to the respective supervisory authority, this information is usually not accessible to the research community. Furthermore, the economic impact of these breaches is usually unclear.

As well as the cyber risk management community, this research also supports cybersecurity stakeholders. Researchers are provided with an up-to-date, peer-reviewed literature of available datasets showing where these datasets have been used. For example, this includes datasets that have been used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems. This reduces a time-consuming search for suitable datasets and ensures a comprehensive review of those available. Through the dataset descriptions, researchers and industry stakeholders can compare and select the most suitable datasets for their purposes. In addition, it is possible to combine the datasets from one source in the context of cybersecurity or cyber risk. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks.

Cyber risks are defined as “operational risks to information and technology assets that have consequences affecting the confidentiality, availability, and/or integrity of information or information systems” (Cebula et al. 2014 ). Prominent cyber risk events include data breaches and cyberattacks (Agrafiotis et al. 2018 ). The increasing exposure and potential impact of cyber risk have been highlighted in recent industry reports (e.g. Allianz 2021 ; World Economic Forum 2020 ). Cyberattacks on critical infrastructures are ranked 5th in the World Economic Forum's Global Risk Report. Ransomware, malware and distributed denial-of-service (DDoS) are examples of the evolving modes of a cyberattack. One example is the ransomware attack on the Colonial Pipeline, which shut down the 5500 mile pipeline system that delivers 2.5 million barrels of fuel per day and critical liquid fuel infrastructure from oil refineries to states along the U.S. East Coast (Brower and McCormick 2021 ). These and other cyber incidents have led the U.S. to strengthen its cybersecurity and introduce, among other things, a public body to analyse major cyber incidents and make recommendations to prevent a recurrence (Murphey 2021a ). Another example of the scope of cyberattacks is the ransomware NotPetya in 2017. The damage amounted to USD 10 billion, as the ransomware exploited a vulnerability in the windows system, allowing it to spread independently worldwide in the network (GAO 2021 ). In the same year, the ransomware WannaCry was launched by cybercriminals. The cyberattack on Windows software took user data hostage in exchange for Bitcoin cryptocurrency (Smart 2018 ). The victims included the National Health Service in Great Britain. As a result, ambulances were redirected to other hospitals because of information technology (IT) systems failing, leaving people in need of urgent assistance waiting. It has been estimated that 19,000 cancelled treatment appointments resulted from losses of GBP 92 million (Field 2018 ). Throughout the COVID-19 pandemic, ransomware attacks increased significantly, as working from home arrangements increased vulnerability (Murphey 2021b ).

Besides cyberattacks, data breaches can also cause high costs. Under the General Data Protection Regulation (GDPR), companies are obliged to protect personal data and safeguard the data protection rights of all individuals in the EU area. The GDPR allows data protection authorities in each country to impose sanctions and fines on organisations they find in breach. “For data breaches, the maximum fine can be €20 million or 4% of global turnover, whichever is higher” (GDPR.EU 2021 ). Data breaches often involve a large amount of sensitive data that has been accessed, unauthorised, by external parties, and are therefore considered important for information security due to their far-reaching impact (Goode et al. 2017 ). A data breach is defined as a “security incident in which sensitive, protected, or confidential data are copied, transmitted, viewed, stolen, or used by an unauthorized individual” (Freeha et al. 2021 ). Depending on the amount of data, the extent of the damage caused by a data breach can be significant, with the average cost being USD 392 million 1 (IBM Security 2020 ).

This research paper reviews the existing literature and open data sources related to cybersecurity and cyber risk, focusing on the datasets used to improve academic understanding and advance the current state-of-the-art in cybersecurity. Furthermore, important information about the available datasets is presented (e.g. use cases), and a plea is made for open data and the standardisation of cyber risk data for academic comparability and replication. The remainder of the paper is structured as follows. The next section describes the related work regarding cybersecurity and cyber risks. The third section outlines the review method used in this work and the process. The fourth section details the results of the identified literature. Further discussion is presented in the penultimate section and the final section concludes.

Related work

Due to the significance of cyber risks, several literature reviews have been conducted in this field. Eling ( 2020 ) reviewed the existing academic literature on the topic of cyber risk and cyber insurance from an economic perspective. A total of 217 papers with the term ‘cyber risk’ were identified and classified in different categories. As a result, open research questions are identified, showing that research on cyber risks is still in its infancy because of their dynamic and emerging nature. Furthermore, the author highlights that particular focus should be placed on the exchange of information between public and private actors. An improved information flow could help to measure the risk more accurately and thus make cyber risks more insurable and help risk managers to determine the right level of cyber risk for their company. In the context of cyber insurance data, Romanosky et al. ( 2019 ) analysed the underwriting process for cyber insurance and revealed how cyber insurers understand and assess cyber risks. For this research, they examined 235 American cyber insurance policies that were publicly available and looked at three components (coverage, application questionnaires and pricing). The authors state in their findings that many of the insurers used very simple, flat-rate pricing (based on a single calculation of expected loss), while others used more parameters such as the asset value of the company (or company revenue) or standard insurance metrics (e.g. deductible, limits), and the industry in the calculation. This is in keeping with Eling ( 2020 ), who states that an increased amount of data could help to make cyber risk more accurately measured and thus more insurable. Similar research on cyber insurance and data was conducted by Nurse et al. ( 2020 ). The authors examined cyber insurance practitioners' perceptions and the challenges they face in collecting and using data. In addition, gaps were identified during the research where further data is needed. The authors concluded that cyber insurance is still in its infancy, and there are still several unanswered questions (for example, cyber valuation, risk calculation and recovery). They also pointed out that a better understanding of data collection and use in cyber insurance would be invaluable for future research and practice. Bessy-Roland et al. ( 2021 ) come to a similar conclusion. They proposed a multivariate Hawkes framework to model and predict the frequency of cyberattacks. They used a public dataset with characteristics of data breaches affecting the U.S. industry. In the conclusion, the authors make the argument that an insurer has a better knowledge of cyber losses, but that it is based on a small dataset and therefore combination with external data sources seems essential to improve the assessment of cyber risks.

Several systematic reviews have been published in the area of cybersecurity (Kruse et al. 2017 ; Lee et al. 2020 ; Loukas et al. 2013 ; Ulven and Wangen 2021 ). In these papers, the authors concentrated on a specific area or sector in the context of cybersecurity. This paper adds to this extant literature by focusing on data availability and its importance to risk management and insurance stakeholders. With a priority on healthcare and cybersecurity, Kruse et al. ( 2017 ) conducted a systematic literature review. The authors identified 472 articles with the keywords ‘cybersecurity and healthcare’ or ‘ransomware’ in the databases Cumulative Index of Nursing and Allied Health Literature, PubMed and Proquest. Articles were eligible for this review if they satisfied three criteria: (1) they were published between 2006 and 2016, (2) the full-text version of the article was available, and (3) the publication is a peer-reviewed or scholarly journal. The authors found that technological development and federal policies (in the U.S.) are the main factors exposing the health sector to cyber risks. Loukas et al. ( 2013 ) conducted a review with a focus on cyber risks and cybersecurity in emergency management. The authors provided an overview of cyber risks in communication, sensor, information management and vehicle technologies used in emergency management and showed areas for which there is still no solution in the literature. Similarly, Ulven and Wangen ( 2021 ) reviewed the literature on cybersecurity risks in higher education institutions. For the literature review, the authors used the keywords ‘cyber’, ‘information threats’ or ‘vulnerability’ in connection with the terms ‘higher education, ‘university’ or ‘academia’. A similar literature review with a focus on Internet of Things (IoT) cybersecurity was conducted by Lee et al. ( 2020 ). The review revealed that qualitative approaches focus on high-level frameworks, and quantitative approaches to cybersecurity risk management focus on risk assessment and quantification of cyberattacks and impacts. In addition, the findings presented a four-step IoT cyber risk management framework that identifies, quantifies and prioritises cyber risks.

Datasets are an essential part of cybersecurity research, underlined by the following works. Ilhan Firat et al. ( 2021 ) examined various cybersecurity datasets in detail. The study was motivated by the fact that with the proliferation of the internet and smart technologies, the mode of cyberattacks is also evolving. However, in order to prevent such attacks, they must first be detected; the dissemination and further development of cybersecurity datasets is therefore critical. In their work, the authors observed studies of datasets used in intrusion detection systems. Khraisat et al. ( 2019 ) also identified a need for new datasets in the context of cybersecurity. The researchers presented a taxonomy of current intrusion detection systems, a comprehensive review of notable recent work, and an overview of the datasets commonly used for assessment purposes. In their conclusion, the authors noted that new datasets are needed because most machine-learning techniques are trained and evaluated on the knowledge of old datasets. These datasets do not contain new and comprehensive information and are partly derived from datasets from 1999. The authors noted that the core of this issue is the availability of new public datasets as well as their quality. The availability of data, how it is used, created and shared was also investigated by Zheng et al. ( 2018 ). The researchers analysed 965 cybersecurity research papers published between 2012 and 2016. They created a taxonomy of the types of data that are created and shared and then analysed the data collected via datasets. The researchers concluded that while datasets are recognised as valuable for cybersecurity research, the proportion of publicly available datasets is limited.

The main contributions of this review and what differentiates it from previous studies can be summarised as follows. First, as far as we can tell, it is the first work to summarise all available datasets on cyber risk and cybersecurity in the context of a systematic review and present them to the scientific community and cyber insurance and cybersecurity stakeholders. Second, we investigated, analysed, and made available the datasets to support efficient and timely progress in cyber risk research. And third, we enable comparability of datasets so that the appropriate dataset can be selected depending on the research area.

Methodology

Process and eligibility criteria.

The structure of this systematic review is inspired by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework (Page et al. 2021 ), and the search was conducted from 3 to 10 May 2021. Due to the continuous development of cyber risks and their countermeasures, only articles published in the last 10 years were considered. In addition, only articles published in peer-reviewed journals written in English were included. As a final criterion, only articles that make use of one or more cybersecurity or cyber risk datasets met the inclusion criteria. Specifically, these studies presented new or existing datasets, used them for methods, or used them to verify new results, as well as analysed them in an economic context and pointed out their effects. The criterion was fulfilled if it was clearly stated in the abstract that one or more datasets were used. A detailed explanation of this selection criterion can be found in the ‘Study selection’ section.

Information sources

In order to cover a complete spectrum of literature, various databases were queried to collect relevant literature on the topic of cybersecurity and cyber risks. Due to the spread of related articles across multiple databases, the literature search was limited to the following four databases for simplicity: IEEE Xplore, Scopus, SpringerLink and Web of Science. This is similar to other literature reviews addressing cyber risks or cybersecurity, including Sardi et al. ( 2021 ), Franke and Brynielsson ( 2014 ), Lagerström (2019), Eling and Schnell ( 2016 ) and Eling ( 2020 ). In this paper, all databases used in the aforementioned works were considered. However, only two studies also used all the databases listed. The IEEE Xplore database contains electrical engineering, computer science, and electronics work from over 200 journals and three million conference papers (IEEE 2021 ). Scopus includes 23,400 peer-reviewed journals from more than 5000 international publishers in the areas of science, engineering, medicine, social sciences and humanities (Scopus 2021 ). SpringerLink contains 3742 journals and indexes over 10 million scientific documents (SpringerLink 2021 ). Finally, Web of Science indexes over 9200 journals in different scientific disciplines (Science 2021 ).

A search string was created and applied to all databases. To make the search efficient and reproducible, the following search string with Boolean operator was used in all databases: cybersecurity OR cyber risk AND dataset OR database. To ensure uniformity of the search across all databases, some adjustments had to be made for the respective search engines. In Scopus, for example, the Advanced Search was used, and the field code ‘Title-ABS-KEY’ was integrated into the search string. For IEEE Xplore, the search was carried out with the Search String in the Command Search and ‘All Metadata’. In the Web of Science database, the Advanced Search was used. The special feature of this search was that it had to be carried out in individual steps. The first search was carried out with the terms cybersecurity OR cyber risk with the field tag Topic (T.S. =) and the second search with dataset OR database. Subsequently, these searches were combined, which then delivered the searched articles for review. For SpringerLink, the search string was used in the Advanced Search under the category ‘Find the resources with all of the words’. After conducting this search string, 5219 studies could be found. According to the eligibility criteria (period, language and only scientific journals), 1581 studies were identified in the databases:

  • Scopus: 135
  • Springer Link: 548
  • Web of Science: 534

An overview of the process is given in Fig.  2 . Combined with the results from the four databases, 854 articles without duplicates were identified.

An external file that holds a picture, illustration, etc.
Object name is 41288_2022_266_Fig2_HTML.jpg

Literature search process and categorisation of the studies

Study selection

In the final step of the selection process, the articles were screened for relevance. Due to a large number of results, the abstracts were analysed in the first step of the process. The aim was to determine whether the article was relevant for the systematic review. An article fulfilled the criterion if it was recognisable in the abstract that it had made a contribution to datasets or databases with regard to cyber risks or cybersecurity. Specifically, the criterion was considered to be met if the abstract used datasets that address the causes or impacts of cyber risks, and measures in the area of cybersecurity. In this process, the number of articles was reduced to 288. The articles were then read in their entirety, and an expert panel of six people decided whether they should be used. This led to a final number of 255 articles. The years in which the articles were published and the exact number can be seen in Fig.  3 .

An external file that holds a picture, illustration, etc.
Object name is 41288_2022_266_Fig3_HTML.jpg

Distribution of studies

Data collection process and synthesis of the results

For the data collection process, various data were extracted from the studies, including the names of the respective creators, the name of the dataset or database and the corresponding reference. It was also determined where the data came from. In the context of accessibility, it was determined whether access is free, controlled, available for purchase or not available. It was also determined when the datasets were created and the time period referenced. The application type and domain characteristics of the datasets were identified.

This section analyses the results of the systematic literature review. The previously identified studies are divided into three categories: datasets on the causes of cyber risks, datasets on the effects of cyber risks and datasets on cybersecurity. The classification is based on the intended use of the studies. This system of classification makes it easier for stakeholders to find the appropriate datasets. The categories are evaluated individually. Although complete information is available for a large proportion of datasets, this is not true for all of them. Accordingly, the abbreviation N/A has been inserted in the respective characters to indicate that this information could not be determined by the time of submission. The term ‘use cases in the literature’ in the following and supplementary tables refers to the application areas in which the corresponding datasets were used in the literature. The areas listed there refer to the topic area on which the researchers conducted their research. Since some datasets were used interdisciplinarily, the listed use cases in the literature are correspondingly longer. Before discussing each category in the next sections, Fig.  4 provides an overview of the number of datasets found and their year of creation. Figure  5 then shows the relationship between studies and datasets in the period under consideration. Figure  6 shows the distribution of studies, their use of datasets and their creation date. The number of datasets used is higher than the number of studies because the studies often used several datasets (Table ​ (Table1). 1 ).

An external file that holds a picture, illustration, etc.
Object name is 41288_2022_266_Fig4_HTML.jpg

Distribution of dataset results

An external file that holds a picture, illustration, etc.
Object name is 41288_2022_266_Fig5_HTML.jpg

Correlation between the studies and the datasets

An external file that holds a picture, illustration, etc.
Object name is 41288_2022_266_Fig6_HTML.jpg

Distribution of studies and their use of datasets

Percentage contribution of datasets for each place of origin

Most of the datasets are generated in the U.S. (up to 58.2%). Canada and Australia rank next, with 11.3% and 5% of all the reviewed datasets, respectively.

Additionally, to create value for the datasets for the cyber insurance industry, an assessment of the applicability of each dataset has been provided for cyber insurers. This ‘Use Case Assessment’ includes the use of the data in the context of different analyses, calculation of cyber insurance premiums, and use of the information for the design of cyber insurance contracts or for additional customer services. To reasonably account for the transition of direct hyperlinks in the future, references were directed to the main websites for longevity (nearest resource point). In addition, the links to the main pages contain further information on the datasets and different versions related to the operating systems. The references were chosen in such a way that practitioners get the best overview of the respective datasets.

Case datasets

This section presents selected articles that use the datasets to analyse the causes of cyber risks. The datasets help identify emerging trends and allow pattern discovery in cyber risks. This information gives cybersecurity experts and cyber insurers the data to make better predictions and take appropriate action. For example, if certain vulnerabilities are not adequately protected, cyber insurers will demand a risk surcharge leading to an improvement in the risk-adjusted premium. Due to the capricious nature of cyber risks, existing data must be supplemented with new data sources (for example, new events, new methods or security vulnerabilities) to determine prevailing cyber exposure. The datasets of cyber risk causes could be combined with existing portfolio data from cyber insurers and integrated into existing pricing tools and factors to improve the valuation of cyber risks.

A portion of these datasets consists of several taxonomies and classifications of cyber risks. Aassal et al. ( 2020 ) propose a new taxonomy of phishing characteristics based on the interpretation and purpose of each characteristic. In comparison, Hindy et al. ( 2020 ) presented a taxonomy of network threats and the impact of current datasets on intrusion detection systems. A similar taxonomy was suggested by Kiwia et al. ( 2018 ). The authors presented a cyber kill chain-based taxonomy of banking Trojans features. The taxonomy built on a real-world dataset of 127 banking Trojans collected from December 2014 to January 2016 by a major U.K.-based financial organisation.

In the context of classification, Aamir et al. ( 2021 ) showed the benefits of machine learning for classifying port scans and DDoS attacks in a mixture of normal and attack traffic. Guo et al. ( 2020 ) presented a new method to improve malware classification based on entropy sequence features. The evaluation of this new method was conducted on different malware datasets.

To reconstruct attack scenarios and draw conclusions based on the evidence in the alert stream, Barzegar and Shajari ( 2018 ) use the DARPA2000 and MACCDC 2012 dataset for their research. Giudici and Raffinetti ( 2020 ) proposed a rank-based statistical model aimed at predicting the severity levels of cyber risk. The model used cyber risk data from the University of Milan. In contrast to the previous datasets, Skrjanc et al. ( 2018 ) used the older dataset KDD99 to monitor large-scale cyberattacks using a cauchy clustering method.

Amin et al. ( 2021 ) used a cyberattack dataset from the Canadian Institute for Cybersecurity to identify spatial clusters of countries with high rates of cyberattacks. In the context of cybercrime, Junger et al. ( 2020 ) examined crime scripts, key characteristics of the target company and the relationship between criminal effort and financial benefit. For their study, the authors analysed 300 cases of fraudulent activities against Dutch companies. With a similar focus on cybercrime, Mireles et al. ( 2019 ) proposed a metric framework to measure the effectiveness of the dynamic evolution of cyberattacks and defensive measures. To validate its usefulness, they used the DEFCON dataset.

Due to the rapidly changing nature of cyber risks, it is often impossible to obtain all information on them. Kim and Kim ( 2019 ) proposed an automated dataset generation system called CTIMiner that collects threat data from publicly available security reports and malware repositories. They released a dataset to the public containing about 640,000 records from 612 security reports published between January 2008 and 2019. A similar approach is proposed by Kim et al. ( 2020 ), using a named entity recognition system to extract core information from cyber threat reports automatically. They created a 498,000-tag dataset during their research (Ulven and Wangen 2021 ).

Within the framework of vulnerabilities and cybersecurity issues, Ulven and Wangen ( 2021 ) proposed an overview of mission-critical assets and everyday threat events, suggested a generic threat model, and summarised common cybersecurity vulnerabilities. With a focus on hospitality, Chen and Fiscus ( 2018 ) proposed several issues related to cybersecurity in this sector. They analysed 76 security incidents from the Privacy Rights Clearinghouse database. Supplementary Table 1 lists all findings that belong to the cyber causes dataset.

Impact datasets

This section outlines selected findings of the cyber impact dataset. For cyber insurers, these datasets can form an important basis for information, as they can be used to calculate cyber insurance premiums, evaluate specific cyber risks, formulate inclusions and exclusions in cyber wordings, and re-evaluate as well as supplement the data collected so far on cyber risks. For example, information on financial losses can help to better assess the loss potential of cyber risks. Furthermore, the datasets can provide insight into the frequency of occurrence of these cyber risks. The new datasets can be used to close any data gaps that were previously based on very approximate estimates or to find new results.

Eight studies addressed the costs of data breaches. For instance, Eling and Jung ( 2018 ) reviewed 3327 data breach events from 2005 to 2016 and identified an asymmetric dependence of monthly losses by breach type and industry. The authors used datasets from the Privacy Rights Clearinghouse for analysis. The Privacy Rights Clearinghouse datasets and the Breach level index database were also used by De Giovanni et al. ( 2020 ) to describe relationships between data breaches and bitcoin-related variables using the cointegration methodology. The data were obtained from the Department of Health and Human Services of healthcare facilities reporting data breaches and a national database of technical and organisational infrastructure information. Also in the context of data breaches, Algarni et al. ( 2021 ) developed a comprehensive, formal model that estimates the two components of security risks: breach cost and the likelihood of a data breach within 12 months. For their survey, the authors used two industrial reports from the Ponemon institute and VERIZON. To illustrate the scope of data breaches, Neto et al. ( 2021 ) identified 430 major data breach incidents among more than 10,000 incidents. The database created is available and covers the period 2018 to 2019.

With a direct focus on insurance, Biener et al. ( 2015 ) analysed 994 cyber loss cases from an operational risk database and investigated the insurability of cyber risks based on predefined criteria. For their study, they used data from the company SAS OpRisk Global Data. Similarly, Eling and Wirfs ( 2019 ) looked at a wide range of cyber risk events and actual cost data using the same database. They identified cyber losses and analysed them using methods from statistics and actuarial science. Using a similar reference, Farkas et al. ( 2021 ) proposed a method for analysing cyber claims based on regression trees to identify criteria for classifying and evaluating claims. Similar to Chen and Fiscus ( 2018 ), the dataset used was the Privacy Rights Clearinghouse database. Within the framework of reinsurance, Moro ( 2020 ) analysed cyber index-based information technology activity to see if index-parametric reinsurance coverage could suggest its cedant using data from a Symantec dataset.

Paté-Cornell et al. ( 2018 ) presented a general probabilistic risk analysis framework for cybersecurity in an organisation to be specified. The results are distributions of losses to cyberattacks, with and without considered countermeasures in support of risk management decisions based both on past data and anticipated incidents. The data used were from The Common Vulnerability and Exposures database and via confidential access to a database of cyberattacks on a large, U.S.-based organisation. A different conceptual framework for cyber risk classification and assessment was proposed by Sheehan et al. ( 2021 ). This framework showed the importance of proactive and reactive barriers in reducing companies’ exposure to cyber risk and quantifying the risk. Another approach to cyber risk assessment and mitigation was proposed by Mukhopadhyay et al. ( 2019 ). They estimated the probability of an attack using generalised linear models, predicted the security technology required to reduce the probability of cyberattacks, and used gamma and exponential distributions to best approximate the average loss data for each malicious attack. They also calculated the expected loss due to cyberattacks, calculated the net premium that would need to be charged by a cyber insurer, and suggested cyber insurance as a strategy to minimise losses. They used the CSI-FBI survey (1997–2010) to conduct their research.

In order to highlight the lack of data on cyber risks, Eling ( 2020 ) conducted a literature review in the areas of cyber risk and cyber insurance. Available information on the frequency, severity, and dependency structure of cyber risks was filtered out. In addition, open questions for future cyber risk research were set up. Another example of data collection on the impact of cyberattacks is provided by Sornette et al. ( 2013 ), who use a database of newspaper articles, press reports and other media to provide a predictive method to identify triggering events and potential accident scenarios and estimate their severity and frequency. A similar approach to data collection was used by Arcuri et al. ( 2020 ) to gather an original sample of global cyberattacks from newspaper reports sourced from the LexisNexis database. This collection is also used and applied to the fields of dynamic communication and cyber risk perception by Fang et al. ( 2021 ). To create a dataset of cyber incidents and disputes, Valeriano and Maness ( 2014 ) collected information on cyber interactions between rival states.

To assess trends and the scale of economic cybercrime, Levi ( 2017 ) examined datasets from different countries and their impact on crime policy. Pooser et al. ( 2018 ) investigated the trend in cyber risk identification from 2006 to 2015 and company characteristics related to cyber risk perception. The authors used a dataset of various reports from cyber insurers for their study. Walker-Roberts et al. ( 2020 ) investigated the spectrum of risk of a cybersecurity incident taking place in the cyber-physical-enabled world using the VERIS Community Database. The datasets of impacts identified are presented below. Due to overlap, some may also appear in the causes dataset (Supplementary Table 2).

Cybersecurity datasets

General intrusion detection.

General intrusion detection systems account for the largest share of countermeasure datasets. For companies or researchers focused on cybersecurity, the datasets can be used to test their own countermeasures or obtain information about potential vulnerabilities. For example, Al-Omari et al. ( 2021 ) proposed an intelligent intrusion detection model for predicting and detecting attacks in cyberspace, which was applied to dataset UNSW-NB 15. A similar approach was taken by Choras and Kozik ( 2015 ), who used machine learning to detect cyberattacks on web applications. To evaluate their method, they used the HTTP dataset CSIC 2010. For the identification of unknown attacks on web servers, Kamarudin et al. ( 2017 ) proposed an anomaly-based intrusion detection system using an ensemble classification approach. Ganeshan and Rodrigues ( 2020 ) showed an intrusion detection system approach, which clusters the database into several groups and detects the presence of intrusion in the clusters. In comparison, AlKadi et al. ( 2019 ) used a localisation-based model to discover abnormal patterns in network traffic. Hybrid models have been recommended by Bhattacharya et al. ( 2020 ) and Agrawal et al. ( 2019 ); the former is a machine-learning model based on principal component analysis for the classification of intrusion detection system datasets, while the latter is a hybrid ensemble intrusion detection system for anomaly detection using different datasets to detect patterns in network traffic that deviate from normal behaviour.

Agarwal et al. ( 2021 ) used three different machine learning algorithms in their research to find the most suitable for efficiently identifying patterns of suspicious network activity. The UNSW-NB15 dataset was used for this purpose. Kasongo and Sun ( 2020 ), Feed-Forward Deep Neural Network (FFDNN), Keshk et al. ( 2021 ), the privacy-preserving anomaly detection framework, and others also use the UNSW-NB 15 dataset as part of intrusion detection systems. The same dataset and others were used by Binbusayyis and Vaiyapuri ( 2019 ) to identify and compare key features for cyber intrusion detection. Atefinia and Ahmadi ( 2021 ) proposed a deep neural network model to reduce the false positive rate of an anomaly-based intrusion detection system. Fossaceca et al. ( 2015 ) focused in their research on the development of a framework that combined the outputs of multiple learners in order to improve the efficacy of network intrusion, and Gauthama Raman et al. ( 2020 ) presented a search algorithm based on Support Vector machine to improve the performance of the detection and false alarm rate to improve intrusion detection techniques. Ahmad and Alsemmeari ( 2020 ) targeted extreme learning machine techniques due to their good capabilities in classification problems and handling huge data. They used the NSL-KDD dataset as a benchmark.

With reference to prediction, Bakdash et al. ( 2018 ) used datasets from the U.S. Department of Defence to predict cyberattacks by malware. This dataset consists of weekly counts of cyber events over approximately seven years. Another prediction method was presented by Fan et al. ( 2018 ), which showed an improved integrated cybersecurity prediction method based on spatial-time analysis. Also, with reference to prediction, Ashtiani and Azgomi ( 2014 ) proposed a framework for the distributed simulation of cyberattacks based on high-level architecture. Kirubavathi and Anitha ( 2016 ) recommended an approach to detect botnets, irrespective of their structures, based on network traffic flow behaviour analysis and machine-learning techniques. Dwivedi et al. ( 2021 ) introduced a multi-parallel adaptive technique to utilise an adaption mechanism in the group of swarms for network intrusion detection. AlEroud and Karabatis ( 2018 ) presented an approach that used contextual information to automatically identify and query possible semantic links between different types of suspicious activities extracted from network flows.

Intrusion detection systems with a focus on IoT

In addition to general intrusion detection systems, a proportion of studies focused on IoT. Habib et al. ( 2020 ) presented an approach for converting traditional intrusion detection systems into smart intrusion detection systems for IoT networks. To enhance the process of diagnostic detection of possible vulnerabilities with an IoT system, Georgescu et al. ( 2019 ) introduced a method that uses a named entity recognition-based solution. With regard to IoT in the smart home sector, Heartfield et al. ( 2021 ) presented a detection system that is able to autonomously adjust the decision function of its underlying anomaly classification models to a smart home’s changing condition. Another intrusion detection system was suggested by Keserwani et al. ( 2021 ), which combined Grey Wolf Optimization and Particle Swam Optimization to identify various attacks for IoT networks. They used the KDD Cup 99, NSL-KDD and CICIDS-2017 to evaluate their model. Abu Al-Haija and Zein-Sabatto ( 2020 ) provide a comprehensive development of a new intelligent and autonomous deep-learning-based detection and classification system for cyberattacks in IoT communication networks that leverage the power of convolutional neural networks, abbreviated as IoT-IDCS-CNN (IoT-based Intrusion Detection and Classification System using Convolutional Neural Network). To evaluate the development, the authors used the NSL-KDD dataset. Biswas and Roy ( 2021 ) recommended a model that identifies malicious botnet traffic using novel deep-learning approaches like artificial neural networks gutted recurrent units and long- or short-term memory models. They tested their model with the Bot-IoT dataset.

With a more forensic background, Koroniotis et al. ( 2020 ) submitted a network forensic framework, which described the digital investigation phases for identifying and tracing attack behaviours in IoT networks. The suggested work was evaluated with the Bot-IoT and UINSW-NB15 datasets. With a focus on big data and IoT, Chhabra et al. ( 2020 ) presented a cyber forensic framework for big data analytics in an IoT environment using machine learning. Furthermore, the authors mentioned different publicly available datasets for machine-learning models.

A stronger focus on a mobile phones was exhibited by Alazab et al. ( 2020 ), which presented a classification model that combined permission requests and application programme interface calls. The model was tested with a malware dataset containing 27,891 Android apps. A similar approach was taken by Li et al. ( 2019a , b ), who proposed a reliable classifier for Android malware detection based on factorisation machine architecture and extraction of Android app features from manifest files and source code.

Literature reviews

In addition to the different methods and models for intrusion detection systems, various literature reviews on the methods and datasets were also found. Liu and Lang ( 2019 ) proposed a taxonomy of intrusion detection systems that uses data objects as the main dimension to classify and summarise machine learning and deep learning-based intrusion detection literature. They also presented four different benchmark datasets for machine-learning detection systems. Ahmed et al. ( 2016 ) presented an in-depth analysis of four major categories of anomaly detection techniques, which include classification, statistical, information theory and clustering. Hajj et al. ( 2021 ) gave a comprehensive overview of anomaly-based intrusion detection systems. Their article gives an overview of the requirements, methods, measurements and datasets that are used in an intrusion detection system.

Within the framework of machine learning, Chattopadhyay et al. ( 2018 ) conducted a comprehensive review and meta-analysis on the application of machine-learning techniques in intrusion detection systems. They also compared different machine learning techniques in different datasets and summarised the performance. Vidros et al. ( 2017 ) presented an overview of characteristics and methods in automatic detection of online recruitment fraud. They also published an available dataset of 17,880 annotated job ads, retrieved from the use of a real-life system. An empirical study of different unsupervised learning algorithms used in the detection of unknown attacks was presented by Meira et al. ( 2020 ).

New datasets

Kilincer et al. ( 2021 ) reviewed different intrusion detection system datasets in detail. They had a closer look at the UNS-NB15, ISCX-2012, NSL-KDD and CIDDS-001 datasets. Stojanovic et al. ( 2020 ) also provided a review on datasets and their creation for use in advanced persistent threat detection in the literature. Another review of datasets was provided by Sarker et al. ( 2020 ), who focused on cybersecurity data science as part of their research and provided an overview from a machine-learning perspective. Avila et al. ( 2021 ) conducted a systematic literature review on the use of security logs for data leak detection. They recommended a new classification of information leak, which uses the GDPR principles, identified the most widely publicly available dataset for threat detection, described the attack types in the datasets and the algorithms used for data leak detection. Tuncer et al. ( 2020 ) presented a bytecode-based detection method consisting of feature extraction using local neighbourhood binary patterns. They chose a byte-based malware dataset to investigate the performance of the proposed local neighbourhood binary pattern-based detection method. With a different focus, Mauro et al. ( 2020 ) gave an experimental overview of neural-based techniques relevant to intrusion detection. They assessed the value of neural networks using the Bot-IoT and UNSW-DB15 datasets.

Another category of results in the context of countermeasure datasets is those that were presented as new. Moreno et al. ( 2018 ) developed a database of 300 security-related accidents from European and American sources. The database contained cybersecurity-related events in the chemical and process industry. Damasevicius et al. ( 2020 ) proposed a new dataset (LITNET-2020) for network intrusion detection. The dataset is a new annotated network benchmark dataset obtained from the real-world academic network. It presents real-world examples of normal and under-attack network traffic. With a focus on IoT intrusion detection systems, Alsaedi et al. ( 2020 ) proposed a new benchmark IoT/IIot datasets for assessing intrusion detection system-enabled IoT systems. Also in the context of IoT, Vaccari et al. ( 2020 ) proposed a dataset focusing on message queue telemetry transport protocols, which can be used to train machine-learning models. To evaluate the performance of machine-learning classifiers, Mahfouz et al. ( 2020 ) created a dataset called Game Theory and Cybersecurity (GTCS). A dataset containing 22,000 malware and benign samples was constructed by Martin et al. ( 2019 ). The dataset can be used as a benchmark to test the algorithm for Android malware classification and clustering techniques. In addition, Laso et al. ( 2017 ) presented a dataset created to investigate how data and information quality estimates enable the detection of anomalies and malicious acts in cyber-physical systems. The dataset contained various cyberattacks and is publicly available.

In addition to the results described above, several other studies were found that fit into the category of countermeasures. Johnson et al. ( 2016 ) examined the time between vulnerability disclosures. Using another vulnerabilities database, Common Vulnerabilities and Exposures (CVE), Subroto and Apriyana ( 2019 ) presented an algorithm model that uses big data analysis of social media and statistical machine learning to predict cyber risks. A similar databank but with a different focus, Common Vulnerability Scoring System, was used by Chatterjee and Thekdi ( 2020 ) to present an iterative data-driven learning approach to vulnerability assessment and management for complex systems. Using the CICIDS2017 dataset to evaluate the performance, Malik et al. ( 2020 ) proposed a control plane-based orchestration for varied, sophisticated threats and attacks. The same dataset was used in another study by Lee et al. ( 2019 ), who developed an artificial security information event management system based on a combination of event profiling for data processing and different artificial network methods. To exploit the interdependence between multiple series, Fang et al. ( 2021 ) proposed a statistical framework. In order to validate the framework, the authors applied it to a dataset of enterprise-level security breaches from the Privacy Rights Clearinghouse and Identity Theft Center database. Another framework with a defensive aspect was recommended by Li et al. ( 2021 ) to increase the robustness of deep neural networks against adversarial malware evasion attacks. Sarabi et al. ( 2016 ) investigated whether and to what extent business details can help assess an organisation's risk of data breaches and the distribution of risk across different types of incidents to create policies for protection, detection and recovery from different forms of security incidents. They used data from the VERIS Community Database.

Datasets that have been classified into the cybersecurity category are detailed in Supplementary Table 3. Due to overlap, records from the previous tables may also be included.

This paper presented a systematic literature review of studies on cyber risk and cybersecurity that used datasets. Within this framework, 255 studies were fully reviewed and then classified into three different categories. Then, 79 datasets were consolidated from these studies. These datasets were subsequently analysed, and important information was selected through a process of filtering out. This information was recorded in a table and enhanced with further information as part of the literature analysis. This made it possible to create a comprehensive overview of the datasets. For example, each dataset contains a description of where the data came from and how the data has been used to date. This allows different datasets to be compared and the appropriate dataset for the use case to be selected. This research certainly has limitations, so our selection of datasets cannot necessarily be taken as a representation of all available datasets related to cyber risks and cybersecurity. For example, literature searches were conducted in four academic databases and only found datasets that were used in the literature. Many research projects also used old datasets that may no longer consider current developments. In addition, the data are often focused on only one observation and are limited in scope. For example, the datasets can only be applied to specific contexts and are also subject to further limitations (e.g. region, industry, operating system). In the context of the applicability of the datasets, it is unfortunately not possible to make a clear statement on the extent to which they can be integrated into academic or practical areas of application or how great this effort is. Finally, it remains to be pointed out that this is an overview of currently available datasets, which are subject to constant change.

Due to the lack of datasets on cyber risks in the academic literature, additional datasets on cyber risks were integrated as part of a further search. The search was conducted on the Google Dataset search portal. The search term used was ‘cyber risk datasets’. Over 100 results were found. However, due to the low significance and verifiability, only 20 selected datasets were included. These can be found in Table 2  in the “ Appendix ”.

Summary of Google datasets

The results of the literature review and datasets also showed that there continues to be a lack of available, open cyber datasets. This lack of data is reflected in cyber insurance, for example, as it is difficult to find a risk-based premium without a sufficient database (Nurse et al. 2020 ). The global cyber insurance market was estimated at USD 5.5 billion in 2020 (Dyson 2020 ). When compared to the USD 1 trillion global losses from cybercrime (Maleks Smith et al. 2020 ), it is clear that there exists a significant cyber risk awareness challenge for both the insurance industry and international commerce. Without comprehensive and qualitative data on cyber losses, it can be difficult to estimate potential losses from cyberattacks and price cyber insurance accordingly (GAO 2021 ). For instance, the average cyber insurance loss increased from USD 145,000 in 2019 to USD 359,000 in 2020 (FitchRatings 2021 ). Cyber insurance is an important risk management tool to mitigate the financial impact of cybercrime. This is particularly evident in the impact of different industries. In the Energy & Commodities financial markets, a ransomware attack on the Colonial Pipeline led to a substantial impact on the U.S. economy. As a result of the attack, about 45% of the U.S. East Coast was temporarily unable to obtain supplies of diesel, petrol and jet fuel. This caused the average price in the U.S. to rise 7 cents to USD 3.04 per gallon, the highest in seven years (Garber 2021 ). In addition, Colonial Pipeline confirmed that it paid a USD 4.4 million ransom to a hacker gang after the attack. Another ransomware attack occurred in the healthcare and government sector. The victim of this attack was the Irish Health Service Executive (HSE). A ransom payment of USD 20 million was demanded from the Irish government to restore services after the hack (Tidy 2021 ). In the car manufacturing sector, Miller and Valasek ( 2015 ) initiated a cyberattack that resulted in the recall of 1.4 million vehicles and cost manufacturers EUR 761 million. The risk that arises in the context of these events is the potential for the accumulation of cyber losses, which is why cyber insurers are not expanding their capacity. An example of this accumulation of cyber risks is the NotPetya malware attack, which originated in Russia, struck in Ukraine, and rapidly spread around the world, causing at least USD 10 billion in damage (GAO 2021 ). These events highlight the importance of proper cyber risk management.

This research provides cyber insurance stakeholders with an overview of cyber datasets. Cyber insurers can use the open datasets to improve their understanding and assessment of cyber risks. For example, the impact datasets can be used to better measure financial impacts and their frequencies. These data could be combined with existing portfolio data from cyber insurers and integrated with existing pricing tools and factors to better assess cyber risk valuation. Although most cyber insurers have sparse historical cyber policy and claims data, they remain too small at present for accurate prediction (Bessy-Roland et al. 2021 ). A combination of portfolio data and external datasets would support risk-adjusted pricing for cyber insurance, which would also benefit policyholders. In addition, cyber insurance stakeholders can use the datasets to identify patterns and make better predictions, which would benefit sustainable cyber insurance coverage. In terms of cyber risk cause datasets, cyber insurers can use the data to review their insurance products. For example, the data could provide information on which cyber risks have not been sufficiently considered in product design or where improvements are needed. A combination of cyber cause and cybersecurity datasets can help establish uniform definitions to provide greater transparency and clarity. Consistent terminology could lead to a more sustainable cyber market, where cyber insurers make informed decisions about the level of coverage and policyholders understand their coverage (The Geneva Association 2020).

In addition to the cyber insurance community, this research also supports cybersecurity stakeholders. The reviewed literature can be used to provide a contemporary, contextual and categorised summary of available datasets. This supports efficient and timely progress in cyber risk research and is beneficial given the dynamic nature of cyber risks. With the help of the described cybersecurity datasets and the identified information, a comparison of different datasets is possible. The datasets can be used to evaluate the effectiveness of countermeasures in simulated cyberattacks or to test intrusion detection systems.

In this paper, we conducted a systematic review of studies on cyber risk and cybersecurity databases. We found that most of the datasets are in the field of intrusion detection and machine learning and are used for technical cybersecurity aspects. The available datasets on cyber risks were relatively less represented. Due to the dynamic nature and lack of historical data, assessing and understanding cyber risk is a major challenge for cyber insurance stakeholders. To address this challenge, a greater density of cyber data is needed to support cyber insurers in risk management and researchers with cyber risk-related topics. With reference to ‘Open Science’ FAIR data (Jacobsen et al. 2020 ), mandatory reporting of cyber incidents could help improve cyber understanding, awareness and loss prevention among companies and insurers. Through greater availability of data, cyber risks can be better understood, enabling researchers to conduct more in-depth research into these risks. Companies could incorporate this new knowledge into their corporate culture to reduce cyber risks. For insurance companies, this would have the advantage that all insurers would have the same understanding of cyber risks, which would support sustainable risk-based pricing. In addition, common definitions of cyber risks could be derived from new data.

The cybersecurity databases summarised and categorised in this research could provide a different perspective on cyber risks that would enable the formulation of common definitions in cyber policies. The datasets can help companies addressing cybersecurity and cyber risk as part of risk management assess their internal cyber posture and cybersecurity measures. The paper can also help improve risk awareness and corporate behaviour, and provides the research community with a comprehensive overview of peer-reviewed datasets and other available datasets in the area of cyber risk and cybersecurity. This approach is intended to support the free availability of data for research. The complete tabulated review of the literature is included in the Supplementary Material.

This work provides directions for several paths of future work. First, there are currently few publicly available datasets for cyber risk and cybersecurity. The older datasets that are still widely used no longer reflect today's technical environment. Moreover, they can often only be used in one context, and the scope of the samples is very limited. It would be of great value if more datasets were publicly available that reflect current environmental conditions. This could help intrusion detection systems to consider current events and thus lead to a higher success rate. It could also compensate for the disadvantages of older datasets by collecting larger quantities of samples and making this contextualisation more widespread. Another area of research may be the integratability and adaptability of cybersecurity and cyber risk datasets. For example, it is often unclear to what extent datasets can be integrated or adapted to existing data. For cyber risks and cybersecurity, it would be helpful to know what requirements need to be met or what is needed to use the datasets appropriately. In addition, it would certainly be helpful to know whether datasets can be modified to be used for cyber risks or cybersecurity. Finally, the ability for stakeholders to identify machine-readable cybersecurity datasets would be useful because it would allow for even clearer delineations or comparisons between datasets. Due to the lack of publicly available datasets, concrete benchmarks often cannot be applied.

Below is the link to the electronic supplementary material.

Biographies

is a PhD student at the Kemmy Business School, University of Limerick, as part of the Emerging Risk Group (ERG). He is researching in joint cooperation with the Institute for Insurance Studies (ivwKöln), TH Köln, where he is working as a Research Assistant at the Cologne Research Centre for Reinsurance. His current research interests include cyber risks, cyber insurance and cybersecurity. Frank is a Fellow of the Chartered Insurance Institute (FCII) and a member of the German Association for Insurance Studies (DVfVW).

is a Lecturer in Risk and Finance at the Kemmy Business School at the University of Limerick. In his research, Dr Sheehan investigates novel risk metrication and machine learning methodologies in the context of insurance and finance, attentive to a changing private and public emerging risk environment. He is a researcher with significant insurance industry and academic experience. With a professional background in actuarial science, his research uses machine-learning techniques to estimate the changing risk profile produced by emerging technologies. He is a senior member of the Emerging Risk Group (ERG) at the University of Limerick, which has long-established expertise in insurance and risk management and has continued success within large research consortia including a number of SFI, FP7 and EU H2020 research projects. In particular, he contributed to the successful completion of three Horizon 2020 EU-funded projects, including PROTECT, Vision Inspired Driver Assistance Systems (VI-DAS) and Cloud Large Scale Video Analysis (Cloud-LSVA).

is a Professor at the Institute of Insurance at the Technical University of Cologne. His activities include teaching and research in insurance law and liability insurance. His research focuses include D&O, corporate liability, fidelity and cyber insurance. In addition, he heads the Master’s degree programme in insurance law and is the Academic Director of the Automotive Insurance Manager and Cyber Insurance Manager certificate programmes. He is also chairman of the examination board at the Institute of Insurance Studies.

Arash Negahdari Kia

is a postdoctoral Marie Cuire scholar and Research Fellow at the Kemmy Business School (KBS), University of Limerick (UL), a member of the Lero Software Research Center and Emerging Risk Group (ERG). He researches the cybersecurity risks of autonomous vehicles using machine-learning algorithms in a team supervised by Dr Finbarr Murphy at KBS, UL. For his PhD, he developed two graph-based, semi-supervised algorithms for multivariate time series for global stock market indices prediction. For his Master’s, he developed neural network models for Forex market prediction. Arash’s other research interests include text mining, graph mining and bioinformatics.

is a Professor in Risk and Insurance at the Kemmy Business School, University of Limerick. He worked on a number of insurance-related research projects, including four EU Commission-funded projects around emerging technologies and risk transfer. Prof. Mullins maintains strong links with the international insurance industry and works closely with Lloyd’s of London and XL Catlin on emerging risk. His work also encompasses the area of applied ethics as it pertains to new technologies. In the field of applied ethics, Dr Mullins works closely with the insurance industry and lectures on cultural and technological breakthroughs of high societal relevance. In that respect, Dr Martin Mullins has been appointed to a European expert group to advise EIOPA on the development of digital responsibility principles in insurance.

is Executive Dean Kemmy Business School. A computer engineering graduate, Finbarr worked for over 10 years in investment banking before returning to academia and completing his PhD in 2010. Finbarr has authored or co-authored over 70 refereed journal papers, edited books and book chapters. His research has been published in leading research journals in his discipline, such as Nature Nanotechnology, Small, Transportation Research A-F and the Review of Derivatives Research. A former Fulbright Scholar and Erasmus Mundus Exchange Scholar, Finbarr has delivered numerous guest lectures in America, mainland Europe, Israel, Russia, China and Vietnam. His research interests include quantitative finance and, more recently, emerging technological risk. Finbarr is currently engaged in several EU H2020 projects and with the Irish Science Foundation Ireland.

(FCII) has held the Chair of Reinsurance at the Institute of Insurance of TH Köln since 1998, focusing on the efficiency of reinsurance, industrial insurance and alternative risk transfer (ART). He studied mathematics and computer science with a focus on artificial intelligence and researched from 1988 to 1991 at the Fraunhofer Institute for Autonomous Intelligent Systems (AiS) in Schloß Birlinghoven. From 1991 to 2004, Prof. Materne worked for Gen Re (formerly Cologne Re) in various management positions in Germany and abroad, and from 2001 to 2003, he served as General Manager of Cologne Re of Dublin in Ireland. In 2008, Prof. Materne founded the Cologne Reinsurance Research Centre, of which he is the Director. Current issues in reinsurance and related fields are analysed and discussed with practitioners, with valuable contacts through the ‘Förderkreis Rückversicherung’ and the organisation of the annual Cologne Reinsurance Symposium. Prof. Materne holds various international supervisory boards, board of directors and advisory board mandates at insurance and reinsurance companies, captives, InsurTechs, EIOPA, as well as at insurance-scientific institutions. He also acts as an arbitrator and party representative in arbitration proceedings.

Open Access funding provided by the IReL Consortium.

Declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

1 Average cost of a breach of more than 50 million records.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Aamir M, Rizvi SSH, Hashmani MA, Zubair M, Ahmad J. Machine learning classification of port scanning and DDoS attacks: A comparative analysis. Mehran University Research Journal of Engineering and Technology. 2021; 40 (1):215–229. doi: 10.22581/muet1982.2101.19. [ CrossRef ] [ Google Scholar ]
  • Aamir M, Zaidi SMA. DDoS attack detection with feature engineering and machine learning: The framework and performance evaluation. International Journal of Information Security. 2019; 18 (6):761–785. doi: 10.1007/s10207-019-00434-1. [ CrossRef ] [ Google Scholar ]
  • Aassal A, El S, Baki A. Das, Verma RM. An in-depth benchmarking and evaluation of phishing detection research for security needs. IEEE Access. 2020; 8 :22170–22192. doi: 10.1109/ACCESS.2020.2969780. [ CrossRef ] [ Google Scholar ]
  • Abu Al-Haija Q, Zein-Sabatto S. An efficient deep-learning-based detection and classification system for cyber-attacks in IoT communication networks. Electronics. 2020; 9 (12):26. doi: 10.3390/electronics9122152. [ CrossRef ] [ Google Scholar ]
  • Adhikari U, Morris TH, Pan SY. Applying Hoeffding adaptive trees for real-time cyber-power event and intrusion classification. IEEE Transactions on Smart Grid. 2018; 9 (5):4049–4060. doi: 10.1109/tsg.2017.2647778. [ CrossRef ] [ Google Scholar ]
  • Agarwal A, Sharma P, Alshehri M, Mohamed AA, Alfarraj O. Classification model for accuracy and intrusion detection using machine learning approach. PeerJ Computer Science. 2021 doi: 10.7717/peerj-cs.437. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Agrafiotis Ioannis, Nurse Jason R.C., Goldsmith M, Creese S, Upton D. A taxonomy of cyber-harms: Defining the impacts of cyber-attacks and understanding how they propagate. Journal of Cybersecurity. 2018; 4 :tyy006. doi: 10.1093/cybsec/tyy006. [ CrossRef ] [ Google Scholar ]
  • Agrawal A, Mohammed S, Fiaidhi J. Ensemble technique for intruder detection in network traffic. International Journal of Security and Its Applications. 2019; 13 (3):1–8. doi: 10.33832/ijsia.2019.13.3.01. [ CrossRef ] [ Google Scholar ]
  • Ahmad, I., and R.A. Alsemmeari. 2020. Towards improving the intrusion detection through ELM (extreme learning machine). CMC Computers Materials & Continua 65 (2): 1097–1111. 10.32604/cmc.2020.011732.
  • Ahmed M, Mahmood AN, Hu JK. A survey of network anomaly detection techniques. Journal of Network and Computer Applications. 2016; 60 :19–31. doi: 10.1016/j.jnca.2015.11.016. [ CrossRef ] [ Google Scholar ]
  • Al-Jarrah OY, Alhussein O, Yoo PD, Muhaidat S, Taha K, Kim K. Data randomization and cluster-based partitioning for Botnet intrusion detection. IEEE Transactions on Cybernetics. 2016; 46 (8):1796–1806. doi: 10.1109/TCYB.2015.2490802. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Al-Mhiqani MN, Ahmad R, Abidin ZZ, Yassin W, Hassan A, Abdulkareem KH, Ali NS, Yunos Z. A review of insider threat detection: Classification, machine learning techniques, datasets, open challenges, and recommendations. Applied Sciences—Basel. 2020; 10 (15):41. doi: 10.3390/app10155208. [ CrossRef ] [ Google Scholar ]
  • Al-Omari M, Rawashdeh M, Qutaishat F, Alshira'H M, Ababneh N. An intelligent tree-based intrusion detection model for cyber security. Journal of Network and Systems Management. 2021; 29 (2):18. doi: 10.1007/s10922-021-09591-y. [ CrossRef ] [ Google Scholar ]
  • Alabdallah A, Awad M. Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System. KSII Transactions on Internet and Information Systems. 2018; 12 (10):5143–5158. doi: 10.3837/tiis.2018.10.027. [ CrossRef ] [ Google Scholar ]
  • Alazab M, Alazab M, Shalaginov A, Mesleh A, Awajan A. Intelligent mobile malware detection using permission requests and API calls. Future Generation Computer Systems—the International Journal of eScience. 2020; 107 :509–521. doi: 10.1016/j.future.2020.02.002. [ CrossRef ] [ Google Scholar ]
  • Albahar MA, Al-Falluji RA, Binsawad M. An empirical comparison on malicious activity detection using different neural network-based models. IEEE Access. 2020; 8 :61549–61564. doi: 10.1109/ACCESS.2020.2984157. [ CrossRef ] [ Google Scholar ]
  • AlEroud AF, Karabatis G. Queryable semantics to detect cyber-attacks: A flow-based detection approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018; 48 (2):207–223. doi: 10.1109/TSMC.2016.2600405. [ CrossRef ] [ Google Scholar ]
  • Algarni AM, Thayananthan V, Malaiya YK. Quantitative assessment of cybersecurity risks for mitigating data breaches in business systems. Applied Sciences (switzerland) 2021 doi: 10.3390/app11083678. [ CrossRef ] [ Google Scholar ]
  • Alhowaide A, Alsmadi I, Tang J. Towards the design of real-time autonomous IoT NIDS. Cluster Computing—the Journal of Networks Software Tools and Applications. 2021 doi: 10.1007/s10586-021-03231-5. [ CrossRef ] [ Google Scholar ]
  • Ali S, Li Y. Learning multilevel auto-encoders for DDoS attack detection in smart grid network. IEEE Access. 2019; 7 :108647–108659. doi: 10.1109/ACCESS.2019.2933304. [ CrossRef ] [ Google Scholar ]
  • AlKadi O, Moustafa N, Turnbull B, Choo KKR. Mixture localization-based outliers models for securing data migration in cloud centers. IEEE Access. 2019; 7 :114607–114618. doi: 10.1109/ACCESS.2019.2935142. [ CrossRef ] [ Google Scholar ]
  • Allianz. 2021. Allianz Risk Barometer. https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/Allianz-Risk-Barometer-2021.pdf . Accessed 15 May 2021.
  • Almiani Muder, AbuGhazleh Alia, Al-Rahayfeh Amer, Atiewi Saleh, Razaque Abdul. Deep recurrent neural network for IoT intrusion detection system. Simulation Modelling Practice and Theory. 2020; 101 :102031. doi: 10.1016/j.simpat.2019.102031. [ CrossRef ] [ Google Scholar ]
  • Alsaedi A, Moustafa N, Tari Z, Mahmood A, Anwar A. TON_IoT telemetry dataset: A new generation dataset of IoT and IIoT for data-driven intrusion detection systems. IEEE Access. 2020; 8 :165130–165150. doi: 10.1109/access.2020.3022862. [ CrossRef ] [ Google Scholar ]
  • Alsamiri J, Alsubhi K. Internet of Things cyber attacks detection using machine learning. International Journal of Advanced Computer Science and Applications. 2019; 10 (12):627–634. doi: 10.14569/IJACSA.2019.0101280. [ CrossRef ] [ Google Scholar ]
  • Alsharafat W. Applying artificial neural network and eXtended classifier system for network intrusion detection. International Arab Journal of Information Technology. 2013; 10 (3):230–238. [ Google Scholar ]
  • Amin RW, Sevil HE, Kocak S, Francia G, III, Hoover P. The spatial analysis of the malicious uniform resource locators (URLs): 2016 dataset case study. Information (switzerland) 2021; 12 (1):1–18. doi: 10.3390/info12010002. [ CrossRef ] [ Google Scholar ]
  • Arcuri MC, Gai LZ, Ielasi F, Ventisette E. Cyber attacks on hospitality sector: Stock market reaction. Journal of Hospitality and Tourism Technology. 2020; 11 (2):277–290. doi: 10.1108/jhtt-05-2019-0080. [ CrossRef ] [ Google Scholar ]
  • Arp Daniel, Spreitzenbarth Michael, Hubner Malte, Rieck Konrad, et al. Drebin: Effective and explainable detection of android malware in your pocket. NDSS Conference. 2014; 14 :23–26. [ Google Scholar ]
  • Ashtiani M, Azgomi MA. A distributed simulation framework for modeling cyber attacks and the evaluation of security measures. Simulation—Transactions of the Society for Modeling and Simulation International. 2014; 90 (9):1071–1102. doi: 10.1177/0037549714540221. [ CrossRef ] [ Google Scholar ]
  • Atefinia R, Ahmadi M. Network intrusion detection using multi-architectural modular deep neural network. Journal of Supercomputing. 2021; 77 (4):3571–3593. doi: 10.1007/s11227-020-03410-y. [ CrossRef ] [ Google Scholar ]
  • Avila R, Khoury R, Khoury R, Petrillo F. Use of security logs for data leak detection: A systematic literature review. Security and Communication Networks. 2021; 2021 :29. doi: 10.1155/2021/6615899. [ CrossRef ] [ Google Scholar ]
  • Azeez NA, Ayemobola TJ, Misra S, Maskeliunas R, Damasevicius R. Network Intrusion Detection with a Hashing Based Apriori Algorithm Using Hadoop MapReduce. Computers. 2019; 8 (4):15. doi: 10.3390/computers8040086. [ CrossRef ] [ Google Scholar ]
  • Bakdash JZ, Hutchinson S, Zaroukian EG, Marusich LR, Thirumuruganathan S, Sample C, Hoffman B, Das G. Malware in the future forecasting of analyst detection of cyber events. Journal of Cybersecurity. 2018 doi: 10.1093/cybsec/tyy007. [ CrossRef ] [ Google Scholar ]
  • Barletta VS, Caivano D, Nannavecchia A, Scalera M. Intrusion detection for in-vehicle communication networks: An unsupervised Kohonen SOM approach. Future Internet. 2020 doi: 10.3390/FI12070119. [ CrossRef ] [ Google Scholar ]
  • Barzegar M, Shajari M. Attack scenario reconstruction using intrusion semantics. Expert Systems with Applications. 2018; 108 :119–133. doi: 10.1016/j.eswa.2018.04.030. [ CrossRef ] [ Google Scholar ]
  • Bessy-Roland Yannick, Boumezoued Alexandre, Hillairet Caroline. Multivariate Hawkes process for cyber insurance. Annals of Actuarial Science. 2021; 15 (1):14–39. doi: 10.1017/S1748499520000093. [ CrossRef ] [ Google Scholar ]
  • Bhardwaj A, Mangat V, Vig R. Hyperband tuned deep neural network with well posed stacked sparse AutoEncoder for detection of DDoS attacks in cloud. IEEE Access. 2020; 8 :181916–181929. doi: 10.1109/ACCESS.2020.3028690. [ CrossRef ] [ Google Scholar ]
  • Bhati BS, Rai CS, Balamurugan B, Al-Turjman F. An intrusion detection scheme based on the ensemble of discriminant classifiers. Computers & Electrical Engineering. 2020; 86 :9. doi: 10.1016/j.compeleceng.2020.106742. [ CrossRef ] [ Google Scholar ]
  • Bhattacharya S, Krishnan SSR, Maddikunta PKR, Kaluri R, Singh S, Gadekallu TR, Alazab M, Tariq U. A novel PCA-firefly based XGBoost classification model for intrusion detection in networks using GPU. Electronics. 2020; 9 (2):16. doi: 10.3390/electronics9020219. [ CrossRef ] [ Google Scholar ]
  • Bibi I, Akhunzada A, Malik J, Iqbal J, Musaddiq A, Kim S. A dynamic DL-driven architecture to combat sophisticated android malware. IEEE Access. 2020; 8 :129600–129612. doi: 10.1109/ACCESS.2020.3009819. [ CrossRef ] [ Google Scholar ]
  • Biener C, Eling M, Wirfs JH. Insurability of cyber risk: An empirical analysis. Geneva Papers on Risk and Insurance: Issues and Practice. 2015; 40 (1):131–158. doi: 10.1057/gpp.2014.19. [ CrossRef ] [ Google Scholar ]
  • Binbusayyis A, Vaiyapuri T. Identifying and benchmarking key features for cyber intrusion detection: An ensemble approach. IEEE Access. 2019; 7 :106495–106513. doi: 10.1109/ACCESS.2019.2929487. [ CrossRef ] [ Google Scholar ]
  • Biswas R, Roy S. Botnet traffic identification using neural networks. Multimedia Tools and Applications. 2021 doi: 10.1007/s11042-021-10765-8. [ CrossRef ] [ Google Scholar ]
  • Bouyeddou B, Harrou F, Kadri B, Sun Y. Detecting network cyber-attacks using an integrated statistical approach. Cluster Computing—the Journal of Networks Software Tools and Applications. 2021; 24 (2):1435–1453. doi: 10.1007/s10586-020-03203-1. [ CrossRef ] [ Google Scholar ]
  • Bozkir AS, Aydos M. LogoSENSE: A companion HOG based logo detection scheme for phishing web page and E-mail brand recognition. Computers & Security. 2020; 95 :18. doi: 10.1016/j.cose.2020.101855. [ CrossRef ] [ Google Scholar ]
  • Brower, D., and M. McCormick. 2021. Colonial pipeline resumes operations following ransomware attack. Financial Times .
  • Cai H, Zhang F, Levi A. An unsupervised method for detecting shilling attacks in recommender systems by mining item relationship and identifying target items. The Computer Journal. 2019; 62 (4):579–597. doi: 10.1093/comjnl/bxy124. [ CrossRef ] [ Google Scholar ]
  • Cebula, J.J., M.E. Popeck, and L.R. Young. 2014. A Taxonomy of Operational Cyber Security Risks Version 2 .
  • Chadza T, Kyriakopoulos KG, Lambotharan S. Learning to learn sequential network attacks using hidden Markov models. IEEE Access. 2020; 8 :134480–134497. doi: 10.1109/ACCESS.2020.3011293. [ CrossRef ] [ Google Scholar ]
  • Chatterjee S, Thekdi S. An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems. Reliability Engineering and System Safety. 2020 doi: 10.1016/j.ress.2019.106664. [ CrossRef ] [ Google Scholar ]
  • Chattopadhyay M, Sen R, Gupta S. A comprehensive review and meta-analysis on applications of machine learning techniques in intrusion detection. Australasian Journal of Information Systems. 2018; 22 :27. doi: 10.3127/ajis.v22i0.1667. [ CrossRef ] [ Google Scholar ]
  • Chen HS, Fiscus J. The inhospitable vulnerability: A need for cybersecurity risk assessment in the hospitality industry. Journal of Hospitality and Tourism Technology. 2018; 9 (2):223–234. doi: 10.1108/JHTT-07-2017-0044. [ CrossRef ] [ Google Scholar ]
  • Chhabra GS, Singh VP, Singh M. Cyber forensics framework for big data analytics in IoT environment using machine learning. Multimedia Tools and Applications. 2020; 79 (23–24):15881–15900. doi: 10.1007/s11042-018-6338-1. [ CrossRef ] [ Google Scholar ]
  • Chiba Z, Abghour N, Moussaid K, Elomri A, Rida M. Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms. Computers and Security. 2019; 86 :291–317. doi: 10.1016/j.cose.2019.06.013. [ CrossRef ] [ Google Scholar ]
  • Choras M, Kozik R. Machine learning techniques applied to detect cyber attacks on web applications. Logic Journal of the IGPL. 2015; 23 (1):45–56. doi: 10.1093/jigpal/jzu038. [ CrossRef ] [ Google Scholar ]
  • Chowdhury Sudipta, Khanzadeh Mojtaba, Akula Ravi, Zhang Fangyan, Zhang Song, Medal Hugh, Marufuzzaman Mohammad, Bian Linkan. Botnet detection using graph-based feature clustering. Journal of Big Data. 2017; 4 (1):14. doi: 10.1186/s40537-017-0074-7. [ CrossRef ] [ Google Scholar ]
  • Cost Of A Cyber Incident: Systematic Review And Cross-Validation, Cybersecurity & Infrastructure Agency , 1, https://www.cisa.gov/sites/default/files/publications/CISA-OCE_Cost_of_Cyber_Incidents_Study-FINAL_508.pdf (2020).
  • D'Hooge L, Wauters T, Volckaert B, De Turck F. Classification hardness for supervised learners on 20 years of intrusion detection data. IEEE Access. 2019; 7 :167455–167469. doi: 10.1109/access.2019.2953451. [ CrossRef ] [ Google Scholar ]
  • Damasevicius R, Venckauskas A, Grigaliunas S, Toldinas J, Morkevicius N, Aleliunas T, Smuikys P. LITNET-2020: An annotated real-world network flow dataset for network intrusion detection. Electronics. 2020; 9 (5):23. doi: 10.3390/electronics9050800. [ CrossRef ] [ Google Scholar ]
  • Giovanni De, Domenico Arturo Leccadito, Pirra Marco. On the determinants of data breaches: A cointegration analysis. Decisions in Economics and Finance. 2020 doi: 10.1007/s10203-020-00301-y. [ CrossRef ] [ Google Scholar ]
  • Deng Lianbing, Li Daming, Yao Xiang, Wang Haoxiang. Retracted Article: Mobile network intrusion detection for IoT system based on transfer learning algorithm. Cluster Computing. 2019; 22 (4):9889–9904. doi: 10.1007/s10586-018-1847-2. [ CrossRef ] [ Google Scholar ]
  • Donkal G, Verma GK. A multimodal fusion based framework to reinforce IDS for securing Big Data environment using Spark. Journal of Information Security and Applications. 2018; 43 :1–11. doi: 10.1016/j.jisa.2018.10.001. [ CrossRef ] [ Google Scholar ]
  • Dunn C, Moustafa N, Turnbull B. Robustness evaluations of sustainable machine learning models against data Poisoning attacks in the Internet of Things. Sustainability. 2020; 12 (16):17. doi: 10.3390/su12166434. [ CrossRef ] [ Google Scholar ]
  • Dwivedi S, Vardhan M, Tripathi S. Multi-parallel adaptive grasshopper optimization technique for detecting anonymous attacks in wireless networks. Wireless Personal Communications. 2021 doi: 10.1007/s11277-021-08368-5. [ CrossRef ] [ Google Scholar ]
  • Dyson, B. 2020. COVID-19 crisis could be ‘watershed’ for cyber insurance, says Swiss Re exec. https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/covid-19-crisis-could-be-watershed-for-cyber-insurance-says-swiss-re-exec-59197154 . Accessed 7 May 2020.
  • EIOPA. 2018. Understanding cyber insurance—a structured dialogue with insurance companies. https://www.eiopa.europa.eu/sites/default/files/publications/reports/eiopa_understanding_cyber_insurance.pdf . Accessed 28 May 2018
  • Elijah AV, Abdullah A, JhanJhi NZ, Supramaniam M, Abdullateef OB. Ensemble and deep-learning methods for two-class and multi-attack anomaly intrusion detection: An empirical study. International Journal of Advanced Computer Science and Applications. 2019; 10 (9):520–528. doi: 10.14569/IJACSA.2019.0100969. [ CrossRef ] [ Google Scholar ]
  • Eling M, Jung K. Copula approaches for modeling cross-sectional dependence of data breach losses. Insurance Mathematics & Economics. 2018; 82 :167–180. doi: 10.1016/j.insmatheco.2018.07.003. [ CrossRef ] [ Google Scholar ]
  • Eling M, Schnell W. What do we know about cyber risk and cyber risk insurance? Journal of Risk Finance. 2016; 17 (5):474–491. doi: 10.1108/jrf-09-2016-0122. [ CrossRef ] [ Google Scholar ]
  • Eling M, Wirfs J. What are the actual costs of cyber risk events? European Journal of Operational Research. 2019; 272 (3):1109–1119. doi: 10.1016/j.ejor.2018.07.021. [ CrossRef ] [ Google Scholar ]
  • Eling Martin. Cyber risk research in business and actuarial science. European Actuarial Journal. 2020; 10 (2):303–333. doi: 10.1007/s13385-020-00250-1. [ CrossRef ] [ Google Scholar ]
  • Elmasry W, Akbulut A, Zaim AH. Empirical study on multiclass classification-based network intrusion detection. Computational Intelligence. 2019; 35 (4):919–954. doi: 10.1111/coin.12220. [ CrossRef ] [ Google Scholar ]
  • Elsaid Shaimaa Ahmed, Albatati Nouf Saleh. An optimized collaborative intrusion detection system for wireless sensor networks. Soft Computing. 2020; 24 (16):12553–12567. doi: 10.1007/s00500-020-04695-0. [ CrossRef ] [ Google Scholar ]
  • Estepa R, Díaz-Verdejo JE, Estepa A, Madinabeitia G. How much training data is enough? A case study for HTTP anomaly-based intrusion detection. IEEE Access. 2020; 8 :44410–44425. doi: 10.1109/ACCESS.2020.2977591. [ CrossRef ] [ Google Scholar ]
  • European Council. 2021. Cybersecurity: how the EU tackles cyber threats. https://www.consilium.europa.eu/en/policies/cybersecurity/ . Accessed 10 May 2021
  • Falco Gregory, Eling Martin, Jablanski Danielle, Weber Matthias, Miller Virginia, Gordon Lawrence A, Wang Shaun Shuxun, Schmit Joan, Thomas Russell, Elvedi Mauro, Maillart Thomas, Donavan Emy, Dejung Simon, Durand Eric, Nutter Franklin, Scheffer Uzi, Arazi Gil, Ohana Gilbert, Lin Herbert. Cyber risk research impeded by disciplinary barriers. Science (american Association for the Advancement of Science) 2019; 366 (6469):1066–1069. doi: 10.1126/science.aaz4795. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fan ZJ, Tan ZP, Tan CX, Li X. An improved integrated prediction method of cyber security situation based on spatial-time analysis. Journal of Internet Technology. 2018; 19 (6):1789–1800. doi: 10.3966/160792642018111906015. [ CrossRef ] [ Google Scholar ]
  • Fang ZJ, Xu MC, Xu SH, Hu TZ. A framework for predicting data breach risk: Leveraging dependence to cope with sparsity. IEEE Transactions on Information Forensics and Security. 2021; 16 :2186–2201. doi: 10.1109/tifs.2021.3051804. [ CrossRef ] [ Google Scholar ]
  • Farkas S, Lopez O, Thomas M. Cyber claim analysis using Generalized Pareto regression trees with applications to insurance. Insurance: Mathematics and Economics. 2021; 98 :92–105. doi: 10.1016/j.insmatheco.2021.02.009. [ CrossRef ] [ Google Scholar ]
  • Farsi H, Fanian A, Taghiyarrenani Z. A novel online state-based anomaly detection system for process control networks. International Journal of Critical Infrastructure Protection. 2019; 27 :11. doi: 10.1016/j.ijcip.2019.100323. [ CrossRef ] [ Google Scholar ]
  • Ferrag MA, Maglaras L, Moschoyiannis S, Janicke H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. Journal of Information Security and Applications. 2020; 50 :19. doi: 10.1016/j.jisa.2019.102419. [ CrossRef ] [ Google Scholar ]
  • Field, M. 2018. WannaCry cyber attack cost the NHS £92m as 19,000 appointments cancelled. https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/ . Accessed 9 May 2018.
  • FitchRatings. 2021. U.S. Cyber Insurance Market Update (Spike in Claims Leads to Decline in 2020 Underwriting Performance). https://www.fitchratings.com/research/insurance/us-cyber-insurance-market-update-spike-in-claims-leads-to-decline-in-2020-underwriting-performance-26-05-2021 .
  • Fossaceca JM, Mazzuchi TA, Sarkani S. MARK-ELM: Application of a novel Multiple Kernel Learning framework for improving the robustness of network intrusion detection. Expert Systems with Applications. 2015; 42 (8):4062–4080. doi: 10.1016/j.eswa.2014.12.040. [ CrossRef ] [ Google Scholar ]
  • Franke Ulrik, Brynielsson Joel. Cyber situational awareness – A systematic review of the literature. Computers & Security. 2014; 46 :18–31. doi: 10.1016/j.cose.2014.06.008. [ CrossRef ] [ Google Scholar ]
  • Freeha Khan, Hwan Kim Jung, Lars Mathiassen, Robin Moore. Data breach management: An integrated risk model. Information & Management. 2021; 58 (1):103392. doi: 10.1016/j.im.2020.103392. [ CrossRef ] [ Google Scholar ]
  • Ganeshan R, Rodrigues Paul. Crow-AFL: Crow based adaptive fractional lion optimization approach for the intrusion detection. Wireless Personal Communications. 2020; 111 (4):2065–2089. doi: 10.1007/s11277-019-06972-0. [ CrossRef ] [ Google Scholar ]
  • GAO. 2021. CYBER INSURANCE—Insurers and policyholders face challenges in an evolving market. https://www.gao.gov/assets/gao-21-477.pdf . Accessed 16 May 2021.
  • Garber, J. 2021. Colonial Pipeline fiasco foreshadows impact of Biden energy policy. https://www.foxbusiness.com/markets/colonial-pipeline-fiasco-foreshadows-impact-of-biden-energy-policy . Accessed 4 May 2021.
  • Gauthama Raman MR, Somu Nivethitha, Jagarapu Sahruday, Manghnani Tina, Selvam Thirumaran, Krithivasan Kannan, Shankar Sriram VS. An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artificial Intelligence Review. 2020; 53 (5):3255–3286. doi: 10.1007/s10462-019-09762-z. [ CrossRef ] [ Google Scholar ]
  • Gavel S, Raghuvanshi AS, Tiwari S. Distributed intrusion detection scheme using dual-axis dimensionality reduction for Internet of things (IoT) Journal of Supercomputing. 2021 doi: 10.1007/s11227-021-03697-5. [ CrossRef ] [ Google Scholar ]
  • GDPR.EU. 2021. FAQ. https://gdpr.eu/faq/ . Accessed 10 May 2021.
  • Georgescu TM, Iancu B, Zurini M. Named-entity-recognition-based automated system for diagnosing cybersecurity situations in IoT networks. Sensors (switzerland) 2019 doi: 10.3390/s19153380. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Giudici Paolo, Raffinetti Emanuela. Cyber risk ordering with rank-based statistical models. AStA Advances in Statistical Analysis. 2020 doi: 10.1007/s10182-020-00387-0. [ CrossRef ] [ Google Scholar ]
  • Goh, J., S. Adepu, K.N. Junejo, and A. Mathur. 2016. A dataset to support research in the design of secure water treatment systems. In CRITIS.
  • Gong XY, Lu JL, Zhou YF, Qiu H, He R. Model uncertainty based annotation error fixing for web attack detection. Journal of Signal Processing Systems for Signal Image and Video Technology. 2021; 93 (2–3):187–199. doi: 10.1007/s11265-019-01494-1. [ CrossRef ] [ Google Scholar ]
  • Goode Sigi, Hoehle Hartmut, Venkatesh Viswanath, Brown Susan A. USER compensation as a data breach recovery action: An investigation of the sony playstation network breach. MIS Quarterly. 2017; 41 (3):703–727. doi: 10.25300/MISQ/2017/41.3.03. [ CrossRef ] [ Google Scholar ]
  • Guo H, Huang S, Huang C, Pan Z, Zhang M, Shi F. File entropy signal analysis combined with wavelet decomposition for malware classification. IEEE Access. 2020; 8 :158961–158971. doi: 10.1109/ACCESS.2020.3020330. [ CrossRef ] [ Google Scholar ]
  • Habib Maria, Aljarah Ibrahim, Faris Hossam. A Modified multi-objective particle swarm optimizer-based Lévy flight: An approach toward intrusion detection in Internet of Things. Arabian Journal for Science and Engineering. 2020; 45 (8):6081–6108. doi: 10.1007/s13369-020-04476-9. [ CrossRef ] [ Google Scholar ]
  • Hajj S, El Sibai R, Abdo JB, Demerjian J, Makhoul A, Guyeux C. Anomaly-based intrusion detection systems: The requirements, methods, measurements, and datasets. Transactions on Emerging Telecommunications Technologies. 2021; 32 (4):36. doi: 10.1002/ett.4240. [ CrossRef ] [ Google Scholar ]
  • Heartfield R, Loukas G, Bezemskij A, Panaousis E. Self-configurable cyber-physical intrusion detection for smart homes using reinforcement learning. IEEE Transactions on Information Forensics and Security. 2021; 16 :1720–1735. doi: 10.1109/tifs.2020.3042049. [ CrossRef ] [ Google Scholar ]
  • Hemo, B., T. Gafni, K. Cohen, and Q. Zhao. 2020. Searching for anomalies over composite hypotheses. IEEE Transactions on Signal Processing 68: 1181–1196. 10.1109/TSP.2020.2971438
  • Hindy H, Brosset D, Bayne E, Seeam AK, Tachtatzis C, Atkinson R, Bellekens X. A taxonomy of network threats and the effect of current datasets on intrusion detection systems. IEEE Access. 2020; 8 :104650–104675. doi: 10.1109/ACCESS.2020.3000179. [ CrossRef ] [ Google Scholar ]
  • Hong W, Huang D, Chen C, Lee J. Towards accurate and efficient classification of power system contingencies and cyber-attacks using recurrent neural networks. IEEE Access. 2020; 8 :123297–123309. doi: 10.1109/ACCESS.2020.3007609. [ CrossRef ] [ Google Scholar ]
  • Husák Martin, Zádník M, Bartos V, Sokol P. Dataset of intrusion detection alerts from a sharing platform. Data in Brief. 2020; 33 :106530. doi: 10.1016/j.dib.2020.106530. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • IBM Security. 2020. Cost of a Data breach Report. https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf . Accessed 19 May 2021.
  • IEEE. 2021. IEEE Quick Facts. https://www.ieee.org/about/at-a-glance.html . Accessed 11 May 2021.
  • Firat Ilhan, Kilincer Ertam Fatih, Abdulkadir Sengur. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks. 2021; 188 :107840. doi: 10.1016/j.comnet.2021.107840. [ CrossRef ] [ Google Scholar ]
  • Jaber AN, Ul Rehman S. FCM-SVM based intrusion detection system for cloud computing environment. Cluster Computing—the Journal of Networks Software Tools and Applications. 2020; 23 (4):3221–3231. doi: 10.1007/s10586-020-03082-6. [ CrossRef ] [ Google Scholar ]
  • Jacobs, J., S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid. 2019. Exploit prediction scoring system (epss). arXiv:1908.04856
  • Jacobsen Annika, de Miranda Ricardo, Azevedo Nick Juty, Batista Dominique, Coles Simon, Cornet Ronald, Courtot Mélanie, Crosas Mercè, Dumontier Michel, Evelo Chris T, Goble Carole, Guizzardi Giancarlo, Hansen Karsten Kryger, Hasnain Ali, Hettne Kristina, Heringa Jaap, Hooft Rob W.W., Imming Melanie, Jeffery Keith G, Kaliyaperumal Rajaram, Kersloot Martijn G, Kirkpatrick Christine R, Kuhn Tobias, Labastida Ignasi, Magagna Barbara, McQuilton Peter, Meyers Natalie, Montesanti Annalisa, van Reisen Mirjam, Rocca-Serra Philippe, Pergl Robert, Sansone Susanna-Assunta, da Silva Luiz Olavo Bonino, Santos Juliane Schneider, Strawn George, Thompson Mark, Waagmeester Andra, Weigel Tobias, Wilkinson Mark D, Willighagen Egon L, Wittenburg Peter, Roos Marco, Mons Barend, Schultes Erik. FAIR principles: Interpretations and implementation considerations. Data Intelligence. 2020; 2 (1–2):10–29. doi: 10.1162/dint_r_00024. [ CrossRef ] [ Google Scholar ]
  • Jahromi AN, Hashemi S, Dehghantanha A, Parizi RM, Choo KKR. An enhanced stacked LSTM method with no random initialization for malware threat hunting in safety and time-critical systems. IEEE Transactions on Emerging Topics in Computational Intelligence. 2020; 4 (5):630–640. doi: 10.1109/TETCI.2019.2910243. [ CrossRef ] [ Google Scholar ]
  • Jang S, Li S, Sung Y. FastText-based local feature visualization algorithm for merged image-based malware classification framework for cyber security and cyber defense. Mathematics. 2020; 8 (3):13. doi: 10.3390/math8030460. [ CrossRef ] [ Google Scholar ]
  • Javeed D, Gao TH, Khan MT. SDN-enabled hybrid DL-driven framework for the detection of emerging cyber threats in IoT. Electronics. 2021; 10 (8):16. doi: 10.3390/electronics10080918. [ CrossRef ] [ Google Scholar ]
  • Johnson P, Gorton D, Lagerstrom R, Ekstedt M. Time between vulnerability disclosures: A measure of software product vulnerability. Computers & Security. 2016; 62 :278–295. doi: 10.1016/j.cose.2016.08.004. [ CrossRef ] [ Google Scholar ]
  • Johnson P, Lagerström R, Ekstedt M, Franke U. Can the common vulnerability scoring system be trusted? A Bayesian analysis. IEEE Transactions on Dependable and Secure Computing. 2018; 15 (6):1002–1015. doi: 10.1109/TDSC.2016.2644614. [ CrossRef ] [ Google Scholar ]
  • Junger Marianne, Wang Victoria, Schlömer Marleen. Fraud against businesses both online and offline: Crime scripts, business characteristics, efforts, and benefits. Crime Science. 2020; 9 (1):13. doi: 10.1186/s40163-020-00119-4. [ CrossRef ] [ Google Scholar ]
  • Kalutarage Harsha Kumara, Nguyen Hoang Nga, Shaikh Siraj Ahmed. Towards a threat assessment framework for apps collusion. Telecommunication Systems. 2017; 66 (3):417–430. doi: 10.1007/s11235-017-0296-1. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kamarudin MH, Maple C, Watson T, Safa NS. A LogitBoost-based algorithm for detecting known and unknown web attacks. IEEE Access. 2017; 5 :26190–26200. doi: 10.1109/ACCESS.2017.2766844. [ CrossRef ] [ Google Scholar ]
  • Kasongo SM, Sun YX. A deep learning method with wrapper based feature extraction for wireless intrusion detection system. Computers & Security. 2020; 92 :15. doi: 10.1016/j.cose.2020.101752. [ CrossRef ] [ Google Scholar ]
  • Keserwani Pankaj Kumar, Govil Mahesh Chandra, Pilli Emmanuel S, Govil Prajjval. A smart anomaly-based intrusion detection system for the Internet of Things (IoT) network using GWO–PSO–RF model. Journal of Reliable Intelligent Environments. 2021; 7 (1):3–21. doi: 10.1007/s40860-020-00126-x. [ CrossRef ] [ Google Scholar ]
  • Keshk M, Sitnikova E, Moustafa N, Hu J, Khalil I. An integrated framework for privacy-preserving based anomaly detection for cyber-physical systems. IEEE Transactions on Sustainable Computing. 2021; 6 (1):66–79. doi: 10.1109/TSUSC.2019.2906657. [ CrossRef ] [ Google Scholar ]
  • Khan IA, Pi DC, Bhatia AK, Khan N, Haider W, Wahab A. Generating realistic IoT-based IDS dataset centred on fuzzy qualitative modelling for cyber-physical systems. Electronics Letters. 2020; 56 (9):441–443. doi: 10.1049/el.2019.4158. [ CrossRef ] [ Google Scholar ]
  • Khraisat A, Gondal I, Vamplew P, Kamruzzaman J, Alazab A. Hybrid intrusion detection system based on the stacking ensemble of C5 decision tree classifier and one class support vector machine. Electronics. 2020; 9 (1):18. doi: 10.3390/electronics9010173. [ CrossRef ] [ Google Scholar ]
  • Khraisat Ansam, Gondal Iqbal, Vamplew Peter, Kamruzzaman Joarder. Survey of intrusion detection systems: Techniques, datasets and challenges. Cybersecurity. 2019; 2 (1):20. doi: 10.1186/s42400-019-0038-7. [ CrossRef ] [ Google Scholar ]
  • Kilincer IF, Ertam F, Sengur A. Machine learning methods for cyber security intrusion detection: Datasets and comparative study. Computer Networks. 2021; 188 :16. doi: 10.1016/j.comnet.2021.107840. [ CrossRef ] [ Google Scholar ]
  • Kim D, Kim HK. Automated dataset generation system for collaborative research of cyber threat analysis. Security and Communication Networks. 2019; 2019 :10. doi: 10.1155/2019/6268476. [ CrossRef ] [ Google Scholar ]
  • Kim Gyeongmin, Lee Chanhee, Jo Jaechoon, Lim Heuiseok. Automatic extraction of named entities of cyber threats using a deep Bi-LSTM-CRF network. International Journal of Machine Learning and Cybernetics. 2020; 11 (10):2341–2355. doi: 10.1007/s13042-020-01122-6. [ CrossRef ] [ Google Scholar ]
  • Kirubavathi G, Anitha R. Botnet detection via mining of traffic flow characteristics. Computers & Electrical Engineering. 2016; 50 :91–101. doi: 10.1016/j.compeleceng.2016.01.012. [ CrossRef ] [ Google Scholar ]
  • Kiwia D, Dehghantanha A, Choo KKR, Slaughter J. A cyber kill chain based taxonomy of banking Trojans for evolutionary computational intelligence. Journal of Computational Science. 2018; 27 :394–409. doi: 10.1016/j.jocs.2017.10.020. [ CrossRef ] [ Google Scholar ]
  • Koroniotis N, Moustafa N, Sitnikova E. A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework. Future Generation Computer Systems. 2020; 110 :91–106. doi: 10.1016/j.future.2020.03.042. [ CrossRef ] [ Google Scholar ]
  • Kruse Clemens Scott, Frederick Benjamin, Jacobson Taylor, Kyle Monticone D. Cybersecurity in healthcare: A systematic review of modern threats and trends. Technology and Health Care. 2017; 25 (1):1–10. doi: 10.3233/THC-161263. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kshetri N. The economics of cyber-insurance. IT Professional. 2018; 20 (6):9–14. doi: 10.1109/MITP.2018.2874210. [ CrossRef ] [ Google Scholar ]
  • Kumar R, Kumar P, Tripathi R, Gupta GP, Gadekallu TR, Srivastava G. SP2F: A secured privacy-preserving framework for smart agricultural Unmanned Aerial Vehicles. Computer Networks. 2021 doi: 10.1016/j.comnet.2021.107819. [ CrossRef ] [ Google Scholar ]
  • Kumar R, Tripathi R. DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial internet of things systems. Transactions on Emerging Telecommunications Technologies. 2021; 32 (4):27. doi: 10.1002/ett.4222. [ CrossRef ] [ Google Scholar ]
  • Laso PM, Brosset D, Puentes J. Dataset of anomalies and malicious acts in a cyber-physical subsystem. Data in Brief. 2017; 14 :186–191. doi: 10.1016/j.dib.2017.07.038. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lee J, Kim J, Kim I, Han K. Cyber threat detection based on artificial neural networks using event profiles. IEEE Access. 2019; 7 :165607–165626. doi: 10.1109/ACCESS.2019.2953095. [ CrossRef ] [ Google Scholar ]
  • Lee SJ, Yoo PD, Asyhari AT, Jhi Y, Chermak L, Yeun CY, Taha K. IMPACT: Impersonation attack detection via edge computing using deep Autoencoder and feature abstraction. IEEE Access. 2020; 8 :65520–65529. doi: 10.1109/ACCESS.2020.2985089. [ CrossRef ] [ Google Scholar ]
  • Leong Yin-Yee, Chen Yen-Chih. Cyber risk cost and management in IoT devices-linked health insurance. The Geneva Papers on Risk and Insurance—Issues and Practice. 2020; 45 (4):737–759. doi: 10.1057/s41288-020-00169-4. [ CrossRef ] [ Google Scholar ]
  • Levi, M. 2017. Assessing the trends, scale and nature of economic cybercrimes: overview and Issues: In Cybercrimes, cybercriminals and their policing, in crime, law and social change. Crime, Law and Social Change 67 (1): 3–20. 10.1007/s10611-016-9645-3.
  • Li C, Mills K, Niu D, Zhu R, Zhang H, Kinawi H. Android malware detection based on factorization machine. IEEE Access. 2019; 7 :184008–184019. doi: 10.1109/ACCESS.2019.2958927. [ CrossRef ] [ Google Scholar ]
  • Li DQ, Li QM. Adversarial deep ensemble: evasion attacks and defenses for malware detection. IEEE Transactions on Information Forensics and Security. 2020; 15 :3886–3900. doi: 10.1109/tifs.2020.3003571. [ CrossRef ] [ Google Scholar ]
  • Li DQ, Li QM, Ye YF, Xu SH. A framework for enhancing deep neural networks against adversarial malware. IEEE Transactions on Network Science and Engineering. 2021; 8 (1):736–750. doi: 10.1109/tnse.2021.3051354. [ CrossRef ] [ Google Scholar ]
  • Li RH, Zhang C, Feng C, Zhang X, Tang CJ. Locating vulnerability in binaries using deep neural networks. IEEE Access. 2019; 7 :134660–134676. doi: 10.1109/access.2019.2942043. [ CrossRef ] [ Google Scholar ]
  • Li X, Xu M, Vijayakumar P, Kumar N, Liu X. Detection of low-frequency and multi-stage attacks in industrial Internet of Things. IEEE Transactions on Vehicular Technology. 2020; 69 (8):8820–8831. doi: 10.1109/TVT.2020.2995133. [ CrossRef ] [ Google Scholar ]
  • Liu HY, Lang B. Machine learning and deep learning methods for intrusion detection systems: A survey. Applied Sciences—Basel. 2019; 9 (20):28. doi: 10.3390/app9204396. [ CrossRef ] [ Google Scholar ]
  • Lopez-Martin M, Carro B, Sanchez-Esguevillas A. Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications. 2020 doi: 10.1016/j.eswa.2019.112963. [ CrossRef ] [ Google Scholar ]
  • Loukas G, Gan D, Vuong Tuan. A review of cyber threats and defence approaches in emergency management. Future Internet. 2013; 5 :205–236. doi: 10.3390/fi5020205. [ CrossRef ] [ Google Scholar ]
  • Luo CC, Su S, Sun YB, Tan QJ, Han M, Tian ZH. A convolution-based system for malicious URLs detection. CMC—Computers Materials Continua. 2020; 62 (1):399–411. doi: 10.32604/cmc.2020.06507. [ CrossRef ] [ Google Scholar ]
  • Mahbooba B, Timilsina M, Sahal R, Serrano M. Explainable artificial intelligence (XAI) to enhance trust management in intrusion detection systems using decision tree model. Complexity. 2021; 2021 :11. doi: 10.1155/2021/6634811. [ CrossRef ] [ Google Scholar ]
  • Mahdavifar S, Ghorbani AA. DeNNeS: Deep embedded neural network expert system for detecting cyber attacks. Neural Computing & Applications. 2020; 32 (18):14753–14780. doi: 10.1007/s00521-020-04830-w. [ CrossRef ] [ Google Scholar ]
  • Mahfouz A, Abuhussein A, Venugopal D, Shiva S. Ensemble classifiers for network intrusion detection using a novel network attack dataset. Future Internet. 2020; 12 (11):1–19. doi: 10.3390/fi12110180. [ CrossRef ] [ Google Scholar ]
  • Maleks Smith, Z., E. Lostri, and J.A. Lewis. 2020. The hidden costs of cybercrime. https://www.mcafee.com/enterprise/en-us/assets/reports/rp-hidden-costs-of-cybercrime.pdf . Accessed 16 May 2021.
  • Malik J, Akhunzada A, Bibi I, Imran M, Musaddiq A, Kim SW. Hybrid deep learning: An efficient reconnaissance and surveillance detection mechanism in SDN. IEEE Access. 2020; 8 :134695–134706. doi: 10.1109/ACCESS.2020.3009849. [ CrossRef ] [ Google Scholar ]
  • Manimurugan S. IoT-Fog-Cloud model for anomaly detection using improved Naive Bayes and principal component analysis. Journal of Ambient Intelligence and Humanized Computing. 2020 doi: 10.1007/s12652-020-02723-3. [ CrossRef ] [ Google Scholar ]
  • Martin A, Lara-Cabrera R, Camacho D. Android malware detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and the OmniDroid dataset. Information Fusion. 2019; 52 :128–142. doi: 10.1016/j.inffus.2018.12.006. [ CrossRef ] [ Google Scholar ]
  • Mauro MD, Galatro G, Liotta A. Experimental review of neural-based approaches for network intrusion management. IEEE Transactions on Network and Service Management. 2020; 17 (4):2480–2495. doi: 10.1109/TNSM.2020.3024225. [ CrossRef ] [ Google Scholar ]
  • McLeod A, Dolezel D. Cyber-analytics: Modeling factors associated with healthcare data breaches. Decision Support Systems. 2018; 108 :57–68. doi: 10.1016/j.dss.2018.02.007. [ CrossRef ] [ Google Scholar ]
  • Meira J, Andrade R, Praca I, Carneiro J, Bolon-Canedo V, Alonso-Betanzos A, Marreiros G. Performance evaluation of unsupervised techniques in cyber-attack anomaly detection. Journal of Ambient Intelligence and Humanized Computing. 2020; 11 (11):4477–4489. doi: 10.1007/s12652-019-01417-9. [ CrossRef ] [ Google Scholar ]
  • Miao Y, Ma J, Liu X, Weng J, Li H, Li H. Lightweight fine-grained search over encrypted data in Fog computing. IEEE Transactions on Services Computing. 2019; 12 (5):772–785. doi: 10.1109/TSC.2018.2823309. [ CrossRef ] [ Google Scholar ]
  • Miller, C., and C. Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (S 91).
  • Mireles JD, Ficke E, Cho JH, Hurley P, Xu SH. Metrics towards measuring cyber agility. IEEE Transactions on Information Forensics and Security. 2019; 14 (12):3217–3232. doi: 10.1109/tifs.2019.2912551. [ CrossRef ] [ Google Scholar ]
  • Mishra N, Pandya S. Internet of Things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review. IEEE Access. 2021 doi: 10.1109/ACCESS.2021.3073408. [ CrossRef ] [ Google Scholar ]
  • Monshizadeh M, Khatri V, Atli BG, Kantola R, Yan Z. Performance evaluation of a combined anomaly detection platform. IEEE Access. 2019; 7 :100964–100978. doi: 10.1109/ACCESS.2019.2930832. [ CrossRef ] [ Google Scholar ]
  • Moreno VC, Reniers G, Salzano E, Cozzani V. Analysis of physical and cyber security-related events in the chemical and process industry. Process Safety and Environmental Protection. 2018; 116 :621–631. doi: 10.1016/j.psep.2018.03.026. [ CrossRef ] [ Google Scholar ]
  • Moro ED. Towards an economic cyber loss index for parametric cover based on IT security indicator: A preliminary analysis. Risks. 2020 doi: 10.3390/risks8020045. [ CrossRef ] [ Google Scholar ]
  • Moustafa N, Adi E, Turnbull B, Hu J. A new threat intelligence scheme for safeguarding industry 4.0 systems. IEEE Access. 2018; 6 :32910–32924. doi: 10.1109/ACCESS.2018.2844794. [ CrossRef ] [ Google Scholar ]
  • Moustakidis S, Karlsson P. A novel feature extraction methodology using Siamese convolutional neural networks for intrusion detection. Cybersecurity. 2020 doi: 10.1186/s42400-020-00056-4. [ CrossRef ] [ Google Scholar ]
  • Mukhopadhyay Arunabha, Chatterjee Samir, Bagchi Kallol K, Kirs Peteer J, Shukla Girja K. Cyber Risk Assessment and Mitigation (CRAM) framework using Logit and Probit models for cyber insurance. Information Systems Frontiers. 2019; 21 (5):997–1018. doi: 10.1007/s10796-017-9808-5. [ CrossRef ] [ Google Scholar ]
  • Murphey, H. 2021a. Biden signs executive order to strengthen US cyber security. https://www.ft.com/content/4d808359-b504-4014-85f6-68e7a2851bf1?accessToken=zwAAAXl0_ifgkc9NgINZtQRAFNOF9mjnooUb8Q.MEYCIQDw46SFWsMn1iyuz3kvgAmn6mxc0rIVfw10Lg1ovJSfJwIhAK2X2URzfSqHwIS7ddRCvSt2nGC2DcdoiDTG49-4TeEt&sharetype=gift?token=fbcd6323-1ecf-4fc3-b136-b5b0dd6a8756 . Accessed 7 May 2021.
  • Murphey, H. 2021b. Millions of connected devices have security flaws, study shows. https://www.ft.com/content/0bf92003-926d-4dee-87d7-b01f7c3e9621?accessToken=zwAAAXnA7f2Ikc8L-SADkm1N7tOH17AffD6WIQ.MEQCIDjBuROvhmYV0Mx3iB0cEV7m5oND1uaCICxJu0mzxM0PAiBam98q9zfHiTB6hKGr1gGl0Azt85yazdpX9K5sI8se3Q&sharetype=gift?token=2538218d-77d9-4dd3-9649-3cb556a34e51 . Accessed 6 May 2021.
  • Murugesan V, Shalinie M, Yang MH. Design and analysis of hybrid single packet IP traceback scheme. IET Networks. 2018; 7 (3):141–151. doi: 10.1049/iet-net.2017.0115. [ CrossRef ] [ Google Scholar ]
  • Mwitondi KS, Zargari SA. An iterative multiple sampling method for intrusion detection. Information Security Journal. 2018; 27 (4):230–239. doi: 10.1080/19393555.2018.1539790. [ CrossRef ] [ Google Scholar ]
  • Neto NN, Madnick S, De Paula AMG, Borges NM. Developing a global data breach database and the challenges encountered. ACM Journal of Data and Information Quality. 2021; 13 (1):33. doi: 10.1145/3439873. [ CrossRef ] [ Google Scholar ]
  • Nurse, J.R.C., L. Axon, A. Erola, I. Agrafiotis, M. Goldsmith, and S. Creese. 2020. The data that drives cyber insurance: A study into the underwriting and claims processes. In 2020 International conference on cyber situational awareness, data analytics and assessment (CyberSA), 15–19 June 2020.
  • Oliveira N, Praca I, Maia E, Sousa O. Intelligent cyber attack detection and classification for network-based intrusion detection systems. Applied Sciences—Basel. 2021; 11 (4):21. doi: 10.3390/app11041674. [ CrossRef ] [ Google Scholar ]
  • Page Matthew J, McKenzie Joanne E, Bossuyt Patrick M, Boutron Isabelle, Hoffmann Tammy C, Mulrow Cynthia D, Shamseer Larissa, Tetzlaff Jennifer M, Akl Elie A, Brennan Sue E, Chou Roger, Glanville Julie, Grimshaw Jeremy M, Hróbjartsson Asbjørn, Lalu Manoj M, Li Tianjing, Loder Elizabeth W, Mayo-Wilson Evan, McDonald Steve, McGuinness Luke A, Stewart Lesley A, Thomas James, Tricco Andrea C, Welch Vivian A, Whiting Penny, Moher David. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews. 2021; 10 (1):89. doi: 10.1186/s13643-021-01626-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pajouh HH, Javidan R, Khayami R, Dehghantanha A, Choo KR. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks. IEEE Transactions on Emerging Topics in Computing. 2019; 7 (2):314–323. doi: 10.1109/TETC.2016.2633228. [ CrossRef ] [ Google Scholar ]
  • Parra GD, Rad P, Choo KKR, Beebe N. Detecting Internet of Things attacks using distributed deep learning. Journal of Network and Computer Applications. 2020; 163 :13. doi: 10.1016/j.jnca.2020.102662. [ CrossRef ] [ Google Scholar ]
  • Paté-Cornell ME, Kuypers M, Smith M, Keller P. Cyber risk management for critical infrastructure: A risk analysis model and three case studies. Risk Analysis. 2018; 38 (2):226–241. doi: 10.1111/risa.12844. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pooser, D.M., M.J. Browne, and O. Arkhangelska. 2018. Growth in the perception of cyber risk: evidence from U.S. P&C Insurers. The Geneva Papers on Risk and Insurance—Issues and Practice 43 (2): 208–223. 10.1057/s41288-017-0077-9.
  • Pu, G., L. Wang, J. Shen, and F. Dong. 2021. A hybrid unsupervised clustering-based anomaly detection method. Tsinghua Science and Technology 26 (2): 146–153. 10.26599/TST.2019.9010051.
  • Qiu J, Luo W, Pan L, Tai Y, Zhang J, Xiang Y. Predicting the impact of android malicious samples via machine learning. IEEE Access. 2019; 7 :66304–66316. doi: 10.1109/ACCESS.2019.2914311. [ CrossRef ] [ Google Scholar ]
  • Qu X, Yang L, Guo K, Sun M, Ma L, Feng T, Ren S, Li K, Ma X. Direct batch growth hierarchical self-organizing mapping based on statistics for efficient network intrusion detection. IEEE Access. 2020; 8 :42251–42260. doi: 10.1109/ACCESS.2020.2976810. [ CrossRef ] [ Google Scholar ]
  • Shafiur Rahman, Md, Sajal Halder Md, Uddin Ashraf, Acharjee Uzzal Kumar. An efficient hybrid system for anomaly detection in social networks. Cybersecurity. 2021; 4 (1):10. doi: 10.1186/s42400-021-00074-w. [ CrossRef ] [ Google Scholar ]
  • Ramaiah M, Chandrasekaran V, Ravi V, Kumar N. An intrusion detection system using optimized deep neural network architecture. Transactions on Emerging Telecommunications Technologies. 2021; 32 (4):17. doi: 10.1002/ett.4221. [ CrossRef ] [ Google Scholar ]
  • Raman, M.R.G., K. Kannan, S.K. Pal, and V.S.S. Sriram. 2016. Rough set-hypergraph-based feature selection approach for intrusion detection systems. Defence Science Journal 66 (6): 612–617. 10.14429/dsj.66.10802.
  • Rathore, S., J.H. Park. 2018. Semi-supervised learning based distributed attack detection framework for IoT. Applied Soft Computing 72: 79–89. 10.1016/j.asoc.2018.05.049.
  • Romanosky Sasha, Ablon Lillian, Kuehn Andreas, Jones Therese. Content analysis of cyber insurance policies: How do carriers price cyber risk? Journal of Cybersecurity (oxford) 2019; 5 (1):tyz002. [ Google Scholar ]
  • Sarabi A, Naghizadeh P, Liu Y, Liu M. Risky business: Fine-grained data breach prediction using business profiles. Journal of Cybersecurity. 2016; 2 (1):15–28. doi: 10.1093/cybsec/tyw004. [ CrossRef ] [ Google Scholar ]
  • Sardi Alberto, Rizzi Alessandro, Sorano Enrico, Guerrieri Anna. Cyber risk in health facilities: A systematic literature review. Sustainability. 2021; 12 (17):7002. doi: 10.3390/su12177002. [ CrossRef ] [ Google Scholar ]
  • Sarker Iqbal H, Kayes ASM, Badsha Shahriar, Alqahtani Hamed, Watters Paul, Ng Alex. Cybersecurity data science: An overview from machine learning perspective. Journal of Big Data. 2020; 7 (1):41. doi: 10.1186/s40537-020-00318-5. [ CrossRef ] [ Google Scholar ]
  • Scopus. 2021. Factsheet. https://www.elsevier.com/__data/assets/pdf_file/0017/114533/Scopus_GlobalResearch_Factsheet2019_FINAL_WEB.pdf . Accessed 11 May 2021.
  • Sentuna A, Alsadoon A, Prasad PWC, Saadeh M, Alsadoon OH. A novel Enhanced Naïve Bayes Posterior Probability (ENBPP) using machine learning: Cyber threat analysis. Neural Processing Letters. 2021; 53 (1):177–209. doi: 10.1007/s11063-020-10381-x. [ CrossRef ] [ Google Scholar ]
  • Shaukat K, Luo SH, Varadharajan V, Hameed IA, Chen S, Liu DX, Li JM. Performance comparison and current challenges of using machine learning techniques in cybersecurity. Energies. 2020; 13 (10):27. doi: 10.3390/en13102509. [ CrossRef ] [ Google Scholar ]
  • Sheehan B, Murphy F, Mullins M, Ryan C. Connected and autonomous vehicles: A cyber-risk classification framework. Transportation Research Part a: Policy and Practice. 2019; 124 :523–536. doi: 10.1016/j.tra.2018.06.033. [ CrossRef ] [ Google Scholar ]
  • Sheehan Barry, Murphy Finbarr, Kia Arash N, Kiely Ronan. A quantitative bow-tie cyber risk classification and assessment framework. Journal of Risk Research. 2021; 24 (12):1619–1638. doi: 10.1080/13669877.2021.1900337. [ CrossRef ] [ Google Scholar ]
  • Shlomo A, Kalech M, Moskovitch R. Temporal pattern-based malicious activity detection in SCADA systems. Computers & Security. 2021; 102 :17. doi: 10.1016/j.cose.2020.102153. [ CrossRef ] [ Google Scholar ]
  • Singh KJ, De T. Efficient classification of DDoS attacks using an ensemble feature selection algorithm. Journal of Intelligent Systems. 2020; 29 (1):71–83. doi: 10.1515/jisys-2017-0472. [ CrossRef ] [ Google Scholar ]
  • Skrjanc I, Ozawa S, Ban T, Dovzan D. Large-scale cyber attacks monitoring using Evolving Cauchy Possibilistic Clustering. Applied Soft Computing. 2018; 62 :592–601. doi: 10.1016/j.asoc.2017.11.008. [ CrossRef ] [ Google Scholar ]
  • Smart, W. 2018. Lessons learned review of the WannaCry Ransomware Cyber Attack. https://www.england.nhs.uk/wp-content/uploads/2018/02/lessons-learned-review-wannacry-ransomware-cyber-attack-cio-review.pdf . Accessed 7 May 2021.
  • Sornette D, Maillart T, Kröger W. Exploring the limits of safety analysis in complex technological systems. International Journal of Disaster Risk Reduction. 2013; 6 :59–66. doi: 10.1016/j.ijdrr.2013.04.002. [ CrossRef ] [ Google Scholar ]
  • Sovacool Benjamin K. The costs of failure: A preliminary assessment of major energy accidents, 1907–2007. Energy Policy. 2008; 36 (5):1802–1820. doi: 10.1016/j.enpol.2008.01.040. [ CrossRef ] [ Google Scholar ]
  • SpringerLink. 2021. Journal Search. https://rd.springer.com/search?facet-content-type=%22Journal%22 . Accessed 11 May 2021.
  • Stojanovic B, Hofer-Schmitz K, Kleb U. APT datasets and attack modeling for automated detection methods: A review. Computers & Security. 2020; 92 :19. doi: 10.1016/j.cose.2020.101734. [ CrossRef ] [ Google Scholar ]
  • Subroto A, Apriyana A. Cyber risk prediction through social media big data analytics and statistical machine learning. Journal of Big Data. 2019 doi: 10.1186/s40537-019-0216-1. [ CrossRef ] [ Google Scholar ]
  • Tan Z, Jamdagni A, He X, Nanda P, Liu RP, Hu J. Detection of denial-of-service attacks based on computer vision techniques. IEEE Transactions on Computers. 2015; 64 (9):2519–2533. doi: 10.1109/TC.2014.2375218. [ CrossRef ] [ Google Scholar ]
  • Tidy, J. 2021. Irish cyber-attack: Hackers bail out Irish health service for free. https://www.bbc.com/news/world-europe-57197688 . Accessed 6 May 2021.
  • Tuncer T, Ertam F, Dogan S. Automated malware recognition method based on local neighborhood binary pattern. Multimedia Tools and Applications. 2020; 79 (37–38):27815–27832. doi: 10.1007/s11042-020-09376-6. [ CrossRef ] [ Google Scholar ]
  • Uhm Y, Pak W. Service-aware two-level partitioning for machine learning-based network intrusion detection with high performance and high scalability. IEEE Access. 2021; 9 :6608–6622. doi: 10.1109/ACCESS.2020.3048900. [ CrossRef ] [ Google Scholar ]
  • Ulven JB, Wangen G. A systematic review of cybersecurity risks in higher education. Future Internet. 2021; 13 (2):1–40. doi: 10.3390/fi13020039. [ CrossRef ] [ Google Scholar ]
  • Vaccari I, Chiola G, Aiello M, Mongelli M, Cambiaso E. MQTTset, a new dataset for machine learning techniques on MQTT. Sensors. 2020; 20 (22):17. doi: 10.3390/s20226578. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Valeriano B, Maness RC. The dynamics of cyber conflict between rival antagonists, 2001–11. Journal of Peace Research. 2014; 51 (3):347–360. doi: 10.1177/0022343313518940. [ CrossRef ] [ Google Scholar ]
  • Varghese JE, Muniyal B. An Efficient IDS framework for DDoS attacks in SDN environment. IEEE Access. 2021; 9 :69680–69699. doi: 10.1109/ACCESS.2021.3078065. [ CrossRef ] [ Google Scholar ]
  • Varsha M. V., Vinod P., Dhanya K. A. Identification of malicious android app using manifest and opcode features. Journal of Computer Virology and Hacking Techniques. 2017; 13 (2):125–138. doi: 10.1007/s11416-016-0277-z. [ CrossRef ] [ Google Scholar ]
  • Velliangiri S, Pandey HM. Fuzzy-Taylor-elephant herd optimization inspired Deep Belief Network for DDoS attack detection and comparison with state-of-the-arts algorithms. Future Generation Computer Systems—the International Journal of Escience. 2020; 110 :80–90. doi: 10.1016/j.future.2020.03.049. [ CrossRef ] [ Google Scholar ]
  • Verma A, Ranga V. Machine learning based intrusion detection systems for IoT applications. Wireless Personal Communications. 2020; 111 (4):2287–2310. doi: 10.1007/s11277-019-06986-8. [ CrossRef ] [ Google Scholar ]
  • Vidros S, Kolias C, Kambourakis G, Akoglu L. Automatic detection of online recruitment frauds: Characteristics, methods, and a public dataset. Future Internet. 2017; 9 (1):19. doi: 10.3390/fi9010006. [ CrossRef ] [ Google Scholar ]
  • Vinayakumar R, Alazab M, Soman KP, Poornachandran P, Al-Nemrat A, Venkatraman S. Deep learning approach for intelligent intrusion detection system. IEEE Access. 2019; 7 :41525–41550. doi: 10.1109/access.2019.2895334. [ CrossRef ] [ Google Scholar ]
  • Walker-Roberts S, Hammoudeh M, Aldabbas O, Aydin M, Dehghantanha A. Threats on the horizon: Understanding security threats in the era of cyber-physical systems. Journal of Supercomputing. 2020; 76 (4):2643–2664. doi: 10.1007/s11227-019-03028-9. [ CrossRef ] [ Google Scholar ]
  • Web of Science. 2021. Web of Science: Science Citation Index Expanded. https://clarivate.com/webofsciencegroup/solutions/webofscience-scie/ . Accessed 11 May 2021.
  • World Economic Forum. 2020. WEF Global Risk Report. http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf . Accessed 13 May 2020.
  • Xin Y, Kong L, Liu Z, Chen Y, Li Y, Zhu H, Gao M, Hou H, Wang C. Machine learning and deep learning methods for cybersecurity. IEEE Access. 2018; 6 :35365–35381. doi: 10.1109/ACCESS.2018.2836950. [ CrossRef ] [ Google Scholar ]
  • Xu, C., J. Zhang, K. Chang, and C. Long. 2013. Uncovering collusive spammers in Chinese review websites. In Proceedings of the 22nd ACM international conference on Information & Knowledge Management.
  • Yang J, Li T, Liang G, He W, Zhao Y. A Simple recurrent unit model based intrusion detection system with DCGAN. IEEE Access. 2019; 7 :83286–83296. doi: 10.1109/ACCESS.2019.2922692. [ CrossRef ] [ Google Scholar ]
  • Yuan BG, Wang JF, Liu D, Guo W, Wu P, Bao XH. Byte-level malware classification based on Markov images and deep learning. Computers & Security. 2020; 92 :12. doi: 10.1016/j.cose.2020.101740. [ CrossRef ] [ Google Scholar ]
  • Zhang S, Ou XM, Caragea D. Predicting cyber risks through national vulnerability database. Information Security Journal. 2015; 24 (4–6):194–206. doi: 10.1080/19393555.2015.1111961. [ CrossRef ] [ Google Scholar ]
  • Zhang Ying, Li Peisong, Wang Xinheng. Intrusion detection for IoT based on improved genetic algorithm and deep belief network. IEEE Access. 2019; 7 :31711–31722. doi: 10.1109/ACCESS.2019.2903723. [ CrossRef ] [ Google Scholar ]
  • Zheng, Muwei, Hannah Robbins, Zimo Chai, Prakash Thapa, and Tyler Moore. 2018. Cybersecurity research datasets: taxonomy and empirical analysis. In 11th {USENIX} workshop on cyber security experimentation and test ({CSET} 18).
  • Zhou X, Liang W, Shimizu S, Ma J, Jin Q. Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems. IEEE Transactions on Industrial Informatics. 2021; 17 (8):5790–5798. doi: 10.1109/TII.2020.3047675. [ CrossRef ] [ Google Scholar ]
  • Zhou YY, Cheng G, Jiang SQ, Dai M. Building an efficient intrusion detection system based on feature selection and ensemble classifier. Computer Networks. 2020; 174 :17. doi: 10.1016/j.comnet.2020.107247. [ CrossRef ] [ Google Scholar ]

Cybersecurity

Cybersecurity Cover Image

Most Cited Paper

We are pleased to announce the top 5 cited papers of Cybersecurity.

This list is based on the cites received from 2018 to 2023. You can find the top five articles here .

Cybersecurity Award 2023

Winners Announced - Cybersecurity Award

The Cybersecurity Award is held annually and presented to authors whose work represents outstanding and groundbreaking research in all essential aspects of cybersecurity from the previous year.

  • Most accessed

Minimizing CNOT-count in quantum circuit of the extended Shor’s algorithm for ECDLP

Authors: Xia Liu, Huan Yang and Li Yang

Towards the transferable audio adversarial attack via ensemble methods

Authors: Feng Guo, Zheng Sun, Yuxuan Chen and Lei Ju

LayerCFL: an efficient federated learning with layer-wised clustering

Authors: Jie Yuan, Rui Qian, Tingting Yuan, Mingliang Sun, Jirui Li and Xiaoyong Li

A novel botnet attack detection for IoT networks based on communication graphs

Authors: David Concejal Muñoz and Antonio del-Corte Valiente

Machine learning based fileless malware traffic classification using image visualization

Authors: Fikirte Ayalke Demmese, Ajaya Neupane, Sajad Khorsandroo, May Wang, Kaushik Roy and Yu Fu

Most recent articles RSS

View all articles

Survey of intrusion detection systems: techniques, datasets and challenges

Authors: Ansam Khraisat, Iqbal Gondal, Peter Vamplew and Joarder Kamruzzaman

Review and insight on the behavioral aspects of cybersecurity

Authors: Rachid Ait Maalem Lahcen, Bruce Caulkins, Ram Mohapatra and Manish Kumar

Fuzzing: a survey

Authors: Jun Li, Bodong Zhao and Chao Zhang

A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges

Authors: Ansam Khraisat and Ammar Alazab

Detecting telecommunication fraud by understanding the contents of a call

Authors: Qianqian Zhao, Kai Chen, Tongxin Li, Yi Yang and XiaoFeng Wang

Most accessed articles RSS

Thematic Series

Data-Driven Security Edited by: Yang Liu, Xinming Ou, Xinyu Xing, Guozhu Meng

Data Security and Privacy Edited by: Dan Lin, Jingqiang Lin and Bo Luo

Information Abuse Prevention Edited by: Gang Li and Jianlong Tan

2018 System Security   Edited by: Peng Liu

AI and Security    Edited by: Xiaofeng Wang

Aims and scope

This journal is aimed to systematically cover all essential aspects of cybersecurity, with a focus on reporting on cyberspace security issues, the latest research results, and real-world deployment of security technologies.  

The journal publishes research articles and reviews in the areas including, but not limited to:

• Cryptography and its applications • Network and critical infrastructure security • Hardware security • Software and system security • Cybersecurity data analytics • Data-driven security and measurement studies • Adversarial reasoning • Malware analysis • Privacy-enhancing technologies and anonymity • IoT Security • AI Security

Call for Papers

Thematic Series:  Security and Safety of Autonomous Driving Systems Submission Due: May 31, 2023 Guest Editors: Yinxing Xue, University of Science and Technology of China, China Yuqun Zhang, Southern University of Science and Technology, China Xi Zheng, Macquarie University, Australia

Thematic Series:   Security and Privacy in Cyber-physical Systems Submission Due: December 15, 2023 Guest Editors: Bo Chen, Michigan Technological University, USA Qi Zhu, Northwestern University, USA Yu Chen, Binghamton University, USA

Upcoming Events

NDSS Symposium 2023 (27 Feb–3 March 2023, San Diego, CA, USA) 32 USENIX SECURITY SYMPOSIUM (9–11 August 2023, Anaheim, CA, USA)

Why submit to us

• 1 st open access journal on Cybersecurity • APC fully covered by IIE, CAS • Served by a dedicated international editorial board to give thorough swift editorial response

Editor-in-Chief: MENG Dan

New Content Item (1)

Full Professor in Institute of Information Engineering (IIE), Chinese Academy of Sciences (CAS). His work focuses on network and system security, parallel distributed processing. He has lead important research projects including Dawning supercomputers, National Science and Technology Major Project, National High Technology Research and Development Program of China, and strategic priority research program of CAS. He has published over one hundred peer-reviewed papers. He is the director of IIE, after serving as the deputy director of IIE, the deputy director of the High Technology Research and Development Bureau of CAS.

Executive Editor-in-Chief: LIU Peng

New Content Item (1)

LIU Peng received his BS and MS degrees from the University of Science and Technology of China, and his PhD from George Mason University in 1999.  Dr. Liu is a Professor of Information Sciences and Technology, founding Director of the Center for Cyber-Security, Information Privacy, and Trust, and founding Director of the Cyber Security Lab at Penn State University.   His research interests are in all areas of computer and network security.  He has published a monograph and over 260 refereed technical papers.  His research has been sponsored by NSF, ARO, AFOSR, DARPA, DHS, DOE, AFRL, NSA, TTC, CISCO, and HP.  He has served as a program (co-)chair or general (co-)chair for over 10 international conferences (e.g., Asia CCS 2010) and workshops (e.g., MTD 2016). He chaired the Steering Committee of SECURECOMM during 2008-14. He has served on over 100 program committees and reviewed papers for numerous journals. He is an associate editor for IEEE TDSC. He is a recipient of the DOE Early Career Principle Investigator Award.  He has co-led the effort to make Penn State a NSA-certified National Center of Excellence in Information Assurance Education and Research.  He has advised or co-advised over 30 PhD dissertations to completion.

  • Editorial Board
  • Sign up for article alerts and news from this journal

Affiliated with

New Content Item

The Institute of Information Engineering (IIE) is a national research institute in Beijing that specializes in comprehensive research on theories and applications related to information technology.

IIE strives to be a leading global academic institution by creating first-class research platforms and attracting top researchers. It also seeks to become an important national strategic power in the field of information technology.

IIE’s mission is to promote China’s innovation and industrial competitiveness by advancing information science, standards, and technology in ways that enhance economic security and public safety as well as improve our quality of life.

Read more..

The journal is indexed by

  • EI Compendex
  • Emerging Sources Citation Index
  • EBSCO Discovery Service
  • Institute of Scientific and Technical Information of China
  • Google Scholar
  • Norwegian Register for Scientific Journals and Series
  • OCLC WorldCat Discovery Service
  • ProQuest-ExLibris Primo
  • ProQuest-ExLibris Summon
  • TD Net Discovery Service
  • UGC-CARE List (India)

Annual Journal Metrics

2022 Citation Impact 3.1 - 2-year Impact Factor 4.8 - 5-year Impact Factor 2.071 - SNIP (Source Normalized Impact per Paper) 1.266 - SJR (SCImago Journal Rank)

2022 Speed 9 days submission to first editorial decision for all manuscripts (Median) 113 days submission to accept (Median)

2022 Usage  284,555 downloads 41 Altmetric mentions 

  • ISSN: 2523-3246 (electronic)
  • Reference Manager
  • Simple TEXT file

People also looked at

Conceptual analysis article, cyber security threats: a never-ending challenge for e-commerce.

research papers on cyber security 2020

  • 1 School of Economics and Management, Fuzhou University of International Studies and Trade, Fuzhou, China
  • 2 Department of Engineering Management, Institute of Business Management, Karachi, Pakistan
  • 3 Faculty of Business and Management Sciences, Superior University, Lahore, Pakistan
  • 4 School of Public Administration, Xi’an University of Architecture and Technology, Xi’an, China
  • 5 School of Business, Xiamen Institute of Technology, Xiamen, China
  • 6 Department of Management Sciences, University of Gwadar, Gwadar, Pakistan
  • 7 Department of Economics, University of Sargodha, Sargodha, Pakistan
  • 8 Graduate School of Economics and Management, Ural Federal University, Yekaterinburg, Russia

This study explores the challenge of cyber security threats that e-commerce technology and business are facing. Technology applications for e-commerce are attracting attention from both academia and industry. It has made what was not possible before for the business community and consumers. But it did not come all alone but has brought some challenges, and cyber security challenge is one of them. Cyber security concerns have many forms, but this study focuses on social engineering, denial of services, malware, and attacks on personal data. Firms worldwide spend a lot on addressing cybersecurity issues, which grow each year. However, it seems complicated to overcome the challenge because the attackers continuously search for new vulnerabilities in humans, organizations, and technology. This paper is based on the conceptual analysis of social engineering, denial of services, malware, and attacks on personal data. We argue that implementing modern technology for e-commerce and cybersecurity issues is a never-ending game of cat and mouse. To reduce risks, reliable technology is needed, training of employees and consumer is necessary for using the technology, and a strong policy and regulation is needed at the firm and governmental level.

Introduction

Technology contributes a lot to our daily life. One of the significant contributions of technology is its applications to the way of doing business ( Wang et al., 2022 ). It has shifted the traditional methods of doing business to the next level. New technologies influence the quality and cost of products and services and business means ( Thomson et al., 2022 ). Business means exchanging something for something; to be more specific, it refers to selling and buying products or services in exchange for money ( Burton, 2007 ). As discussed earlier, the way of doing business has changed due to the application of technology; the business activity involving using or applying electronic technology is known as e-commerce or e-business ( Reynolds, 2000 ). In e-commerce, activities are completed online through the internet. Primarily, e-commerce uses a website, but other technologies such as email, etc., can also be used. Three main parts of e-commerce are the electronic market, online retailing, and online auctions. A customer can buy a product or service distantly by using the application or technology offering the product ( Khurana, 2019 ). E-commerce is still evolving with the development of new technology and its applications and has attracted researchers from various areas like business and technology to enhance the process and make it more beneficial and profitable. But these developments have also brought some challenges to the industry ( Jennifer, 2022 ). One of the challenges is “the cyber security concern” in e-commerce ( Mishra et al., 2022 ) which is one of the most critical and common concerns it faces.

E-commerce business entities and customers are always the targets of cybercriminals and cyber-attacks ( D’Adamo et al., 2021 ). According to a report, 83% of the United States retailers are vulnerable and could easily be attacked ( Security Magazine, 2020 ). Attackers usually attack customers’ private data, which is the most valuable asset in e-commerce. They can either steal the data from the database of online stores, malware, ransomware, and e-skimming. They can also attack in the form of distributed denial of services (DDoS) or Pishing ( Bigcommerce, 2022 ). This is clear that with the advent of business with the help of technology like e-business and e-commerce, opportunities are reaching us more rabidly but not in the absence of issues like cyber security, etc. Like the e-commerce organizations, cybercriminals are also constantly enhancing their technology and skills to find vulnerabilities in the existing system of e-commerce and take advantage of them ( Jang-Jaccard and Nepal, 2014 ). Therefore, this is necessary to explore technology’s pros and cons and address the issues.

It is necessary to highlight here that using advanced technology for addressing the issues of cybersecurity is expensive and most of the e-commerce organizations cannot afford. Many organizations often ignore this control on cybersecurity threats due to its huge costs but they also ignore the returns which may gain the organizations in the longer term ( Koomey, 2012 ). Without a doubt it is true that invest in technology ensures security to al large extant yet it is difficult for smaller and new organization to adopt ( Dobrowolska, 2020 ).

Problem statement

Even though technology provides tremendous opportunities for the business sector, the challenges accompanying these opportunities cannot be ignored. One of the challenges is in the form of a cyber security threat, the intensity of which is increasing day by day.

The research aims to explore the concerns about cyber security threats in e-commerce with a focus on social engineering, denial of services, Malware, and Attacks on Personal Data and provide a managerial solution.

Research questions

i. What are the concerns about the cybersecurity threats in e-commerce?

ii. How cybersecurity threats can be addressed and minimized?

This conceptual analysis aims to contribute to understanding cybersecurity in e-commerce. Many of today’s researchers focus on technology’s support in business and ignore the challenges technology is bringing to the company. This work highlights cybersecurity as one of the most critical issues related to technology used in industry (e-commerce). It is focused on some cybersecurity issues, e.g., social engineering, denial of services, malware, and attacks on personal data. Although the scope of cybersecurity is huge, we only discuss some most common types of security breaches. We base this analysis on multiple data sources like books, journal articles, magazines articles, newspapers, blogs, etc. to answer the research questions.

Theoritical background

Cyber-attack theory.

The cyber-attack theory (CAT) believes that information is the central part of any cyber-attack and states that the success of cyber-attacks depends on the information owned by the attackers at the time of the attack and the information modified or gained during the attack ( Zhuang et al., 2015 ). Each system has configuration information that plays a significant role in a cyber-attack. And it is necessary for a cyber-attacker to have this information. This information includes the information about the system, i.e., configuration information, the system data, etc. CAT describes any system or device to be targeted by the set of information parameters, which the attackers want to gain or modify. Furthermore, the attackers have also information about likewise systems, technical skills, etc. which is helpful in conducting such attacks ( Zhuang et al., 2015 ).

Information security theory

The information security theory (IST) states that “Information security is a conscious or subconscious process in which people and organizations attempt to create sustainably viable resources, from information” ( Horne et al., 2016 ). According to the objectives of information, individuals and organizations protect information from risks and threats by applying suitable control measures. Keeping the information protected according to the need of organization and individual make the information sustainable resources. To be more specific, Information security focuses on the protection of information, suitable for the type and sensitivity of the information and its strategic use for the organization ( Horne et al., 2016 ).

System theory

The system-theoretic process analysis is an approach that takes the interaction of each component of a system into account to make a system safer and more secure ( Thomas, 2016 ). It is developed by Leveson to find out hazardous states and unsafe control actions which cause accidents or system losses. In addition, it also generates comprehensive safety requirements to stop the happening of known hazardous scenarios ( Leveson, 2004 ). It integrates factors like software, hardware, human, organizational and safety, etc. for the identification of potential threats and risks ( Leveson, 2004 ).

Causal analysis based on system theory

The causal analysis based on system theory theory states that in order to minimize the risks of accidents and losses, the causes must be identified and analyzed at each component of the system. The objective of this theory is to maximize the learning from incidents and accidents. Although there are some critics of this theory and they believe that it produces too much information to be managed. Yet, it is very helpful in identifying the root cause of any incidents, and the expenditures made in finding those causes or root causes save time and money in the long run ( Henderson, 2013 ).

The above theories show that there are some important factors that must be understood to establish a safe system. For example, the CAT and IST focus on the information and say that in order to make an incident-free system the information must be kept out of the reach of the attackers. Without enough information and knowledge, the attackers are either unable to enter the system or unable to harm a lot. The system theory focuses on the safety measures to be taken at each component of the system, to make the system more secure and protected, and out of the reach of attackers. Even then if an accident occurs, the case analysis theory emphasizes the lesson learned and digging into the root cause of the accident, to plan for the future. Our framework is based upon these theories which is given at the end of discussion section.

Literature review

E-commerce is an enormously growing field that came into being due to the advancement and convergence of technology and the internet, where people do many activities related to commerce. In other words, e-commerce refers to the selling and buying of products online. It involves an online money transfer in exchange for completing the business activity. E-commerce uses digital means to develop and perform different actions and transactions among organizations or groups or between a firm and a customer. According to a study, there are more than 12 million – 24 million e-commerce websites across the globe ( Gennaro, 2022 ). Figure 1 shows the country-wise e-commerce sale in 2021 ( OBERO, 2022a ).

www.frontiersin.org

Figure 1. E-commerce sale by country ( OBERO, 2022a ).

In e-commerce, the business process of buying and selling is completed with the help of the internet. The significant e-commerce activities include a selection of a specific product, money transfer, and data exchange ( Ahmadian, 2021 ). Other activities include marketing through the internet, online management systems, and automatic systems for data collection. E-commerce is helping businesses by enlarging their market scope and size; and reducing operating costs and barriers ( Lorette, 2022 ). The research shows that it positively impacts the economy ( Anvari and Norouzi, 2016 ). In e-commerce, a customer buys directly from the online store using mobile applications and websites. Communication can take place through chatbots, live chat, or voice assistants. The Figure 2 ( Smart Draw, 2022 ) below summarizes the framework of the e-commerce business process from a customer.

www.frontiersin.org

Figure 2. E-commerce workflow diagram ( Smart Draw, 2022 ).

The world is shifting from in-store to online shopping, and big companies like Alibaba, Amazon, etc., are leading the transition. Due to this shift, technological advancements are being made to further online business processes ( Hooks et al., 2022 ). E-commerce provides an ease for customers to buy something and has also proved itself one of the powerful agents for business transformation ( Li X. et al., 2022 ; Thomson et al., 2022 ). The market value of e-commerce in 2021 is given in the following Figure 3 . It shows that Amazon has the largest share, with a value of 1,634 Billion USD ( OBERO, 2022b ).

www.frontiersin.org

Figure 3. Top e-commerce companies by market value ( OBERO, 2022b ).

Due to the rapid growth, the firms upgraded their networks, operations, etc., to provide better services to suppliers and customers. E-commerce technology made yesterday’s impossible goals for business firms possible by providing them with many opportunities to find and capture new markets and attract customers beyond boundaries ( Snihur et al., 2021 ; Giorgi et al., 2022 ). Although doing e-commerce has many advantages for business firms and customers, it is impossible without a sophisticated approach to security ( Dupont, 2012 ).

There are four main market sections where e-commerce operates. These sections are Business to Business, where the sale of products is between businesses; Business to Consumer, which involves sales between businesses and consumers; Consumer to Consumer, which allows sale between individuals, and Consumer to Business, where individuals sell to businesses ( Shopify, 2022 ).

It is important to note that in 2020, the e-commerce sales were 4.28 Trillion USD and are expected to reach 5.4 Trillion USD. The e-commerce share was only about 469.2 billion USD in the United States in 2021. The Figure 4 below shows e-commerce statistics from 2014 to 2024 ( Statista, 2022 ).

www.frontiersin.org

Figure 4. E-commerce sales worldwide ( Statista, 2022 ).

The trends and statistics show that e-commerce is a growing field of doing business and is not limited to some specific areas. It is typical for where internet and technology are available across the globe. For example, an industry like tourism is also adopting technology and changing its traditional business. Now sale and purchase of tickets, hotel reservations, etc., can be made with the help of the internet and the relevant technology. The market size of the global online travel agent sector is about 432 Billion USD, the online travel booking platform industry worldwide is about 517 Billion USD and the revenue share of online sales in the global travel and tourism is about 65%.

Therefore, e-commerce technology and firms must be capable of doing business without difficulty and provide their customer with the best possible experience. But as said earlier, as technology is involved between the purchasers and buyers, the activity completes remotely after sharing the required information. E-commerce invites many threats, and cyber security is the most common and severe in them.

Cyber security

One of the most significant challenges e-commerce faces from the beginning is cyber security threats ( Kianpour et al., 2021 ). Cyber security protects computer systems from information disclosure, misdirection, damage, or theft of electronic data, software, or hardware ( Schatz et al., 2017 ). In e-commerce, it is all about electronic security related to e-commerce activity. Business firms continuously invest in technologies to prevent cyber threats, but cyber actors obtain access to business systems and data. The landscape of cybersecurity issues is evolving as cyber actors are searching for new vulnerabilities through different means. On one hand, malicious actors are enhancing their skills and on the other, they are adopting advanced technologies and techniques to target various organizations ( Wirth, 2017 ). Almost all organizations using internet or computer connectivity, including healthcare, financial firms, transportation, government, and manufacturing industries, are targeted continuously ( Strategic Technologies Program, 2022 ). During the Covid-19 pandemic, the number of attacks were increased by 600% due to the increase in the number of users and dependency on technology. The cost of cybercrime was 3 Trillion USD in 2015, estimated to be 6 trillion USD in 2021 ( Morgan, 2017 ). It is estimated that by 2025, the cost will be 10.5 Billion USD for businesses which is more than the economy of any country after the United States and China ( Expert, 2021 ). This shows how cybersecurity is essential in the current digital and technological era for businesses and organizations, especially those involved in e-commerce ( Team, 2022 ).

It is essential to understand why cybersecurity breaches occur. There are three main reasons for cybersecurity-related issues;

Humans are listed as a significant source of CS by the United States and the United Kingdom ( Dykstra, 2017 ). According to a study, humans are more vulnerable to cause a security breach than technology, i.e., 86, and 63%, respectively, ( Metalidou et al., 2014 ). Another study shows that 80% of cyber-attacks occur due to human-enabled errors ( Saeed et al., 2013 ). Human technology interactions invite security risks, and firms continuously struggle to prevent and mitigate human behavioral-based threats to information security ( Nobles, 2015 ). To obtain a competitive advantage and capture a significant share in the market, business firms adopt and invest in advanced information systems, which often leads to an increase in human mistakes when using the technology. Customers and employees are the weakest link in risk and security management ( Alavi et al., 2016 ). With each passing day, the CS threats are increasing, and firms are continuously adopting and leveraging new technologies to prevent them ( Neely, 2017 ). In addition to inducing the latest technologies to counter the threats, it is also necessary to minimize the behavioral risk associated with humans by adequately training and enhancing their understanding of their interactions with the organization’s information systems ( Metalidou et al., 2014 ). As much as human factors are involved in the concerns related to cybersecurity, most organizations have failed to invest in humans to address the issue ( Alavi et al., 2016 ). It is clear that humans cause cybersecurity threats, as a customer may share their information or data incorrectly, with the wrong person, or to a vulnerable information system. Humans as an employee of the business organization may not be able to use the technology properly and may invite severe cybersecurity threats for both the organization and customer. Last but not the least, the employee may use the information (consumer and organizational) for their personal gain. In all form, human poses a serious threat and it is a big challenge for e-commerce to address.

Technology: In addition to the human factor associated with cyber threats, the second potential threat is the technology itself. Cybercriminals are taking advantage of vulnerabilities induced by the technology, hyper-connected systems, human-enabled errors, and organizations not prepared to prevent or counter such attacks. The most common cyber threats noted in 2021 are phishing, social engineering, credential theft, and compromised or stolen devices with 57, 30, and 33%, respectively, ( Team, 2022 ). Other common threats are spyware, ransomware, trojans, etc. ( kaspersky, 2022 ). A study shows that “-about 81% of breaches resulted from weak or stolen passwords, 62% of breaches stemmed from hacking, 51% of breaches involved malware, and 43% of breaches were social engineering attacks” ( Verizon, 2017 ). One of the most significant sources of cybersecurity issues is the hyper-connectivity of technology in the modern era and the dependency of business and commerce on these hyper-connected systems ( Abdel Hakeem et al., 2022 ). It refers to the networked societies or technologies with each other and the various ways of communication like email, instant messaging, etc. In the context of e-business or e-commerce, it is about the connectivity of an organization’s information system having enormous records with the outside world. This connectivity makes it vulnerable to cybercriminals who take advantage of it.

Non-preparedness: Another reason for cybersecurity threats is non-preparedness ( Pusey and Sadera, 2011 ). Many organizations are unprepared for cyberattacks ( Abdelhamid et al., 2019 ). Either they lack advanced protocols and tools to prevent counter-cyberattacks ( Zwilling et al., 2022 ), or do not respond well ( Akpan et al., 2022 ). Due to their un-preparedness, the attackers take advantage of the opportunity.

The severity of non-preparedness in cybersecurity threats in the modern electronic era is evident from the statistics that only in 2021, 21.8 Billion USD was poured into cybersecurity compared to 5.1 Billion USD in 2017, 5.9 Billion USD in 2018, 8.3 Billion USD in 2019, and 8.9 Billion USD in 2020. In addition, if we look at the data, the last quarter of 2021 witnessed the highest amount of 7.8 Billion USD investment in cybersecurity as shown in Figure 5 ( Metinko, 2022 ).

www.frontiersin.org

Figure 5. Investment in cybersecurity ( Metinko, 2022 ).

Figure 5 above shows that the investment in cybersecurity is increasing yearly with rapid growth in 2021. It is also evident from the Figure 6 that in each coming quarter, the amount for cybersecurity funding increased with a sudden high increase in the last quarter of 2021 from 3.9 Billion USD in the first quarter, 5.3 Billion USD in the second quarter, 4.8 Billion USD in the third quarter and 7.8 Billion USD in the fourth one ( Metinko, 2022 ). To summarize the discussion, the challenge of the cybersecurity landscape is getting worse, and the actors are becoming more experienced and acquiring more sophisticated ways for attacks. This not only increased the number of data breaches, etc. but also threatened the e-commerce organization.

www.frontiersin.org

Figure 6. Investment in cybersecurity quarterluy ( Metinko, 2022 ).

Social engineering

Social Engineering is the most common type of scam, that cybercriminals use (Nick Galov, 2022 ). It is any activity that influences a person’s behavior for taking an action that is not necessarily in their interest ( Social-engineer, 2022 ). It is the psychological manipulation of compelling customers to perform various tasks, activities, etc., and to expose or reveal their confidential information. It may be one step trick or maybe of many steps, but the purpose remains the same, to collect conditional details or to get access to the system ( Anderson, 2008 ). The simplest example of social engineering is the “forget password” option which, after clicking, may direct the user to a malicious link and grant access to the attackers to the user account or system.

Similarly, the original user will no more able to access the invoice ( Purplesec, 2022 ). The target of social engineering may be a firm’s top executives or a student. In other words, anyone can be a target of social engineering attackers ( Sanders, 2022 ). The severity of social engineering can be seen from the statistics that about 98% of cyber-attacks come from this threat ( Purplesec, 2022 ). The most common techniques used in malicious social engineering are:

Phishing: Where the attacker sends emails showing that it is coming from a reputable source and ask for information. Through this process, the criminal gathers personal data and uses it accordingly ( Phishing, 2022 ). Phishing websites are 75 times more than malware, and about 70% of the companies worldwide were a victim in 2020 ( Galov, 2022 ). Only in 2020, business losses were $1.8 billion due to it ( Purplesec, 2022 ).

Vishing: Where the attacker uses a telephone call to attempt or to encourage an action. The purpose is to gather data and obtain valuable information necessary for a firm or individual to compromise ( Olson, 2018 ). Only in 2021, there was a 554% increase in the volume of vishing attacks, which is about 27% of the overall response-based threats. It can be seen from these statistics that it will further increase in the future ( LaCour, 2022 ).

Impersonalization: The attacker presents itself as another person or firm and gets socialized to obtain and gather information or access to a firm, system, etc. ( Easydmarc, 2021 ). Between 2020 and 202, there was a 131% increase in personalization, costing 1.8 Billion USD to the targeted enterprises ( Securitymagazine, 2022 ).

Smishing: Where the attacker is sending messages on the phone to influence the immediate actions of a victim, like direction to visit a malicious website, downloading something, etc. ( Hughes, 2021 ). It is reported that smishing scams only rose by about 328% in 2020.

In e-commerce, when a customer enters a website or page, the attackers socialize and get the data after making a trustful relationship and then use the information or data for personal use. It is not necessarily that the victim must be a new one, but maybe anyone, regardless of his experience, education, and position, might be on target.

Attack on customer personal data

Targeting personal data is also one of the significant challenges e-commerce is facing. As the world is getting more digitized, the amount of data (firm’s data and customer data) shared, stored, and saved on systems and online; is also increasing daily to a tremendous huge volume ( Zende, 2022 ). Similarly, access and utilization of the data and network are also growing. This increases the risk of cybercrime in the form of an attack for retrieving confidential data and also decreases the trust of customers and firms in each other ( Hussien et al., 2022 ). In e-commerce, the customer must share their private information with the organization, making it capable of knowing and recording much information about the customers ( Vasupula et al., 2022 ). For example, home address, phone number, bank card number, date of birth, etc. The online store or company may also record your purchasing history and compare it with your buying details.

There are two main types of attacks on personal data:

1. The online store or organization can use the customer personal information without consent.

2. The data can be attacked and used by cyber attackers, who do not belong to the online firm but from outside and want to steal data.

Only in 2019, around 15 billion data records were compromised ( Security Magazine, 2020 ). It means that concern regarding the attacks on customer personal data is the number one challenge for e-commerce. The customers and e-commerce companies need to understand the risks associated with customer data and the cost of the breach ( Varga, 2021 ). It is a fact that we are living in an information age and information is the most precious asset of this era. Based on the information, organizations design their strategies, plan their products and services, and invest. Also, sharing information with someone or some organization needs a significant trust from the party sharing its information and doing so for a purpose. It is the organization’s responsibility to keep the information safe and protected from illegal use to maintain the customer’s trust and use it in a competitive strategic manner. Suppose the attackers successfully steal the customer information. In that case, it will hurt the customer’s trust and the organization will be no more able to behave in a competitive strategic manner in the market.

Distributed denial of service attacks

It is a type of cyber-attack in which the criminal tries to make the service or system unavailable to the users by disrupting the services through different means ( Ncsc, 2022 ). The most common denial of the service attack method is sending a flood of requests to overload the system and prevent legitimate submissions. Most traffic flooding comes from more than one source, and it is difficult to stop the attack ( Fortinet, 2022 ). In a DDoS attack, the attackers continuously send requests from many authorities to get the web resource down. In e-commerce, for example, they flood the online store, etc., with massive traffic and make the customers unable to purchase something ( Anshari et al., 2022 ). This leads to the disability of the online firm for hours or even for several days. And if the attack is in peak season, it is more annoying and severe; it may cost a considerable amount in the form of customer and income loss ( Dahiya and Gupta, 2020 ).

The primary purpose is to make service delivery impossible by thwarting online firm or store access. It can be of many forms and depends upon the purpose of the attackers and the nature of the e-commerce firm or store ( Mishra et al., 2022 ). There are three main types of DDoS attacks ( Fruhlinger, 2022 ):

1. Volume-based: The attackers use considerable traffic to make a resource (server or a website) unavailable ( Fruhlinger, 2022 ).

2. Network layer: The attackers use many data packets to target the network infrastructures ( Gargar, 2021 ).

3. Application layer: Here, the attackers use maliciously crafted requests to flood the applications and make them unavailable to genuine customers ( Gargar, 2021 ).

It is one of the most significant cybersecurity issues of e-commerce, where the criminals make the e-commerce source or resource unavailable or unreachable to the customers. Availability of service is an essential part of attracting users. For example, if a service is available and its quality is better than that of competitors, people will get automatically drawn to it. In other words, if a service is unavailable, it will not attract people and if the quality is not good, again, the people will opt for a better service. In both cases, there is a loss. Therefore, e-commerce organizations must make sure that their service is available with better quality than competitors. Their system must have the capability to detect DDoS attacks and responds promptly.

Malware (malicious software)

Malware is any software that could infect computers, and cybercriminals use it to insert it on target websites ( CYBER EDU, 2021 ). The primary purpose is to obtain personal data like passwords, account details, money stealing, or blocking the system owner from using it ( Lutkevich, 2021 ). Usually, this way, the user gets misled and is redirected to another website or page. Malware attacks are widespread attacks that execute illegal activities on the victim’s system. It may be ransomware, control of the device, or spyware ( Rapid7, 2022 ). Malware is designed to interrupt or malfunction a server, computer, or computer network. After gaining unauthorized access to the system, it breaks security and privacy and obtains private information ( Brewer, 2016 ). Common types of malware are worms, viruses, trojans, ransomware, horses, spyware, rogue software, scareware, adware, etc. It is challenging to address all types of threats with the same strategy because each type needs its defense strategy like antivirus, firewalls, algorithms, etc. ( Xiao et al., 2020 ). It is a severe problem for e-commerce ( Kim et al., 2018 ). The number of attacks through malware is a serious threat to e-commerce as the number of attacks is increasing yearly by a significant proportion. There were 670,000,000 malware variants in 2017, almost double the number in 2016 ( Xiao et al., 2020 ).

The development and application of modern technology have a lot of advantages for the business sectors but also bring threats in the form of malware. The number of incidents and threats increases yearly as the technology develops and its applications enter new boundaries. It is necessary for the e-commerce organizations that the technology they are using must have the capabilities to detect malicious software and prevent them from entering their system. Again, it can target the organization and its customers; both need to know about it and use secure technology and service.

In the contemporary era, technology is everywhere, in education ( Ahmad et al., 2021 ), assisting in academics and administration tasks ( Ahmad et al., 2022 ) to business ( Ibrahim et al., 2014 ), from marketing to industry ( Sayed et al., 2020 ), from health to space sciences, etc. Trade and commerce are tremendously influenced by digital technologies, which changed the business mood from traditional/conventional to electronic ( den Hond and Moser, 2022 ). Due to technology, not only did the business sector find new opportunities but also expanded beyond geographical limits. Technology enabled the sustainability of e-commerce in the recent Covid-19 pandemic, and enormous growth was witnessed ( Stalmachova et al., 2021 ). But some concerns need to be explored for sustainable and successful e-commerce using technology. The most common among them is cybersecurity threats. E-commerce sites are always targeted for cybercrimes in the form of cyberattacks. Cybercriminals or attackers target e-commerce firms through different means for different purposes. They aim to steal private data like personal information, account details, or financial data and compromise the system not to work correctly. Usually, e-commerce firms of all sizes are on target. The most common cyberattacks are Pishing, denial of service, social engineering, malware, direct access attacks, reverse engineering, spoofing, etc.

The word of e-commerce stands for electronic commerce or the commerce done with the help of electronic technology, the application of technology is increasing daily in e-commerce ( Rahman, 2014 ). Firms are also adopting/implementing technologies without any delay to reach customers and capture market share ( Kramer, 2022 ). There is never-ending competition among the firms in almost all sectors ( Wall, 2022 ). Now each product is available online, from books to medicine, from ticket booking to hotel booking, etc. Also, the customers are looking for their comforts and need fulfillment from buying through trustworthy means ( Joyce, 2022 ). E-commerce is the platform that provides products and services according to the customer’s needs. In an e-commerce environment, the customer can explore the market with the help of a few clicks and quickly find out the difference in product quality, price, and delivery time and compare with the other service providers in the market. So this makes a win-win situation for the customers. But searching different websites/pages and clicking various links are not free from the threats. Sometimes it becomes difficult to differentiate between the actual website and the one aimed at cybercrimes. Sharing information like name, address, account details, phone numbers, etc., may reach the wrong place or person through these websites. Not only the criminals who steal customer information through social engineering, phishing, malware, etc. the same can also attack the e-commerce organization in the same manner ( Li and Liu, 2021 ). Competitors may also pose a severe cybersecurity threat by hacking access to an e-commerce website, DDoS, etc. They may also attack to stole customer information and the selling records of an organization. Such records are the backbone of strategic planning and mean a lot to the e-commerce organization ( Hepfer and Powell, 2020 ).

To address the issue of cybersecurity threats, e-commerce organizations are investing a lot to get rid of it ( Team, 2022 ). The statistics show that the investment to address the issue is increasing each year, but the number of attacks is also growing. It means that the problem can’t be resolved without advanced technology. One reason for this is that new people are getting inclined to avail e-commerce and are more vulnerable than the old user. Hackers, attackers, or cybercriminals are also enhancing their skills and searching for vulnerabilities in the technology, etc. It is a fact that there are many other cybersecurity threats besides social Engineering, denial of services, malware and attacks on personal data were discussed in this study. Based on the review, it is evident that cyber-attacks negatively impact businesses in two ways.

1. The cost of a data breach.

2. Losing the customer trust.

As discussed earlier, e-commerce business firms are continuously investing to address cybersecurity concerns, which are increasing yearly ( Vinoth et al., 2022 ). The governments are also making laws and policies regarding this issue ( Luo and Choi, 2022 ). Still, criminals are also finding new methods to target a customer or firm as technology develops. Similarly, firms support implementing innovative and trustful technologies and tools on their websites to remain competitive and maintain the trust of their customers ( Gull et al., 2022 ). On the other hand, researchers are also continuously enhancing the technology, e.g., work has been done to improve the effect of false alarm detection and then more accurately identify real alarms ( Li S. et al., 2022 ), and various tools were proposed for phishing detection ( Gupta et al., 2021 ). Also, researchers are developing new methods and frameworks to find out the vulnerabilities ( Cvitić et al., 2021 ). Work has been done to develop a botnet defense system to exterminate malicious botnets and make the technology usage more secure ( Pan et al., 2021 ). But on the other hand, the attackers are searching for vulnerabilities, and the never-ending game of mouse and cat continues. Block chain technology is another option for e-commerce trust and security ( Centobelli et al., 2021a ) and digitalization ( Cerchione et al., 2022 ). It may also shape the future of decentralized technologies also ( Centobelli et al., 2021b ).

We divide the cyber security concerns in e-commerce at three different levels and proposed the following framework as shown in Figure 7 .

www.frontiersin.org

Figure 7. Conceptual framework for cybersecurity in e-commerce.

1. Human: Cyber security issues occur due to humans (employees, attackers, and consumers) either lacking the proper knowledge and skills to use the e-commerce technology or not following the protocols related to Cyber security ( Zhuang et al., 2015 ). And if they are attackers, then they know more about the technology, organization, and the users of the technology, i.e., they possess more information. Employees and customers, who are using a particular e-commerce technology must have sufficient knowledge, skills, and information to use the technology properly and to complete a business transaction successfully ( Al-Ghamdi, 2021 ). They also need to have information about the technology and organization and must know the vulnerabilities in both. With the help of information, cybersecurity threats could be minimized as the employees and customers will always be alert where there is some vulnerability. And to a greater extent, they are well aware of the attackers, and what and how they attempt ( Zwilling et al., 2022 ).

2. Organization: At the organizational level, security concerns occur due to inadequate rules, regulations, and policies to implement the security protocols and use the systems according to the law. If cybersecurity is not the theme of an e-commerce organization’s strategy, it is impossible to address it. Organizations need to invest in training, enhancing security controls and measures, and must continuously be searched for the vulnerabilities and their possible solution at the management level ( Roumani et al., 2015 ). If it ignores the need for something that should be done to address cybersecurity threats, they may become a cause of potential damage in the future ( Guembe et al., 2022 ). Organizations should adopt new procedures and policies to overcome the cybersecurity threats as per market demand, organizational need, and attackers’ skills and knowledge.

3. Technology: E-commerce organization often does not invest much to implement a suitable and safe technology, due to which cybersecurity risks increase ( Guembe et al., 2022 ). It is necessary for e-commerce organizations to invest significantly in hiring new and more secured technology ( Dobrowolska, 2020 ). Maybe it is expensive but more beneficial in the longer term ( Koomey, 2012 ).

The name of e-commerce is attractive and the need of the modern-day business market, but it is facing the challenge of cyber security threats. Although firms continuously invest a lot to address the issue, it is not easy. Personal and organizational data are often the target of cyber-attacks. Without a doubt, technology offers new ways of doing business and provides many additional benefits, but cyber security concerns will always be there. Investing and enhancing the security of e-commerce is substantially essential for getting a competitive advantage and for the success of e-commerce business ( Hepfer, 2021 ). No one can afford the price of customers’ trust; they lose because of the exposition of their data. Strong monitoring protocols must be followed before any mishap on both organizational and customer ends. For example, strong passwords and being cautious about clicking and downloading something. Taking advance precautions and investing in a secure version of the technology in e-commerce is the need of the day.

We conclude that no matter how much the employees and consumers are trained and skilled to do e-commerce, how much the e-commerce firm implements and focuses on the implementation of cyber security protocols and policies; and how much-advanced technology is used for conducting the e-commerce business activities; the challenge of cyber security threats will always be there like a sword to hurt the business and no one knows when.

Recommendation

With each passing day, the involvement of technology is increasing with a surprising speed in doing business, i.e., in e-commerce. And to be honest, we cannot escape from its applications or ignore its benefits. But the technological transformation in the form of e-commerce has the foremost challenge of cyber security threats. No matter in e-commerce, the technology we are using today, no matter how trained we are to use a particular technology, and no matter what precaution measures we take, the cybersecurity concerns will always be there for various reasons. We put the following four questions before e-commerce organizations to be answered for sustainable and less risky business activities.

1. Is your organization always ahead and aware of cybersecurity concerns and of advanced practices to address them?

2. Do the technology you are using or implementing for doing an e-commerce business enough secured to face cyber-attacks?

3. What was the impact of any cyber-attack on this technology when it was targeted somewhere or in this organization?

4. Do you have an effective and efficient policy or protocols regarding using technology or doing activities to minimize or overcome cyber threats, etc.?

5. Are you prepared for starting or continuing e-commerce without cyber security threats? Are you ready to handle such situations?

Implication/contribution

Theoretical contribution.

This conceptual analysis analyzes the cybersecurity threats in e-commerce. It explores that cybersecurity is a potential threat to e-commerce and must attract more attention than the present, according to the statistics analyzed ( Furner, 2004 ).

Managerial implications/contribution

The study has the following implications for managers.

1. Without a doubt, modern technology is the need of the day and its applications in business is an irrevocable fact. Managers should take full advantage of modern technology and implement it to capture a larger market and business expansion volume. But they should also be aware of the cyber security threats coming with using and implementing new technology. They should select the appropriate technology to ensure cyber security and train their emplyees how to use it and respond in an unwanted situation.

2. The challenges come with technology, and often, the organization’s employees have less understanding of the new technology. This study highlights the importance of employees’ knowledge about technology usage and managers should provide proper training to the employees to minimize the risks coming from cybersecurity threats.

3. In short, managers can use this work to choose a secured technology for their e-commerce operations and continuously invest in addressing emerging cybersecurity threats.

Future work

1. Many other factors related to cyber security were not studied in this study due to its limited scope, and they can be explored in future studies.

2. Addressing the questions as recommended above are also significant areas for future work.

3. Quantitative analysis of this study to make it more generalized.

4. Research on block chain technology in e-commerce can be done in future to make it more trustworthy ( Centobelli et al., 2021a ).

5. Similar research can be done on knowledge management in e-commerce to address the contemporary challenges ( Castagna et al., 2020 ).

6. Research can also be done on the social, economic and environmental issues and impact of cybersecurity and e-commerce.

The scope of cyber security and e-commerce is comprehensive, and this work is limited to its scope as a perspective work. Explorative, qualitative, and quantitative research with a much broader scope is needed to discover other sides of this study.

Author contributions

SFA and SA contributed to conceptualization, writing – original draft, and methodology. XL contributed to supervision. JK contributed to formal analysis. MA contributed to variable construction. MI contributed to funding acquisition. MI and JU-H contributed to data handling. All authors have read and agreed to the published version of the manuscript.

Acknowledgments

We acknowledge the role of our teachers, supervisors, and friends, who supported us throughout the journey.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Abdel Hakeem, S. A., Hussein, H. H., and Kim, H. (2022). Security requirements and challenges of 6G technologies and applications. Sensors 22:1969. doi: 10.3390/s22051969

PubMed Abstract | CrossRef Full Text | Google Scholar

Abdelhamid, M., Kisekka, V., and Samonas, S. (2019). Mitigating e-services avoidance: the role of government cybersecurity preparedness. Inform. Comput. Secur. 27, 26–46. doi: 10.1108/ICS-02-2018-0024

CrossRef Full Text | Google Scholar

Ahmad, S. F., Alam, M. M., Rahmat, M. K., Mubarik, M. S., and Hyder, S. I. (2022). Academic and administrative role of artificial intelligence in education. Sustainability 14:1101. doi: 10.3390/su14031101

Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., and Hyder, S. I. (2021). Artificial intelligence and its role in education. Sustainability 13:12902. doi: 10.3390/su132212902

Ahmadian, S. (2021). Review of e-commerce service delivery models. Arman Process J. 2, 14–20.

Google Scholar

Akpan, F., Bendiab, G., Shiaeles, S., Karamperidis, S., and Michaloliakos, M. (2022). Cybersecurity challenges in the maritime sector. Network 2, 123–138. doi: 10.3390/network2010009

Alavi, R., Islam, S., and Mouratidis, H. (2016). An information security risk-driven investment model for analysing human factors. Inform. Comput. Secur. 24, 205–227. doi: 10.1108/ICS-01-2016-0006

Al-Ghamdi, M. I. (2021). Effects of knowledge of cyber security on prevention of attacks. Mater. Today Proc. doi: 10.1016/j.matpr.2021.04.098

Anderson, R. J. (2008). “A guide to building dependable distributed systems,” in Security engineering , 2nd Edn, (Hoboken, NJ: Wiley).

Anshari, M., Almunawar, M. N., and Al-Mudimigh, A. (2022). “Digital marketplace as a new frontier of electronic commerce,” in Handbook of research on big data, green growth, and technology disruption in asian companies and societies , (Hershey: IGI Global), 122–137. doi: 10.4018/978-1-7998-8524-5.ch007

Anvari, R. D., and Norouzi, D. (2016). The Impact of E-commerce and R&D on economic development in some selected countries. Proc. Soc. Behav. Sci. 229, 354–362. doi: 10.1016/j.sbspro.2016.07.146

Bigcommerce (2022). What you need to know about securing your ecommerce site against cyber threats. Available online at: https://www.bigcommerce.com/articles/ecommerce/ecommerce-website-security/ (accessed April 10, 2022).

Brewer, R. (2016). Ransomware attacks: Detection, prevention and cure. Netw. Secur. 2016, 5–9. doi: 10.1016/S1353-4858(16)30086-1

Burton, W. (2007). Burton’s legal thesaurus , 4 Edn. New York, NY: McGraw-Hill Education.

Castagna, F., Centobelli, P., Cerchione, R., Esposito, E., Oropallo, E., and Passaro, R. (2020). Customer knowledge management in SMEs facing digital transformation. Sustainability 12:3899. doi: 10.3390/su12093899

Centobelli, P., Cerchione, R., Esposito, E., and Oropallo, E. (2021a). Surfing blockchain wave, or drowning? Shaping the future of distributed ledgers and decentralized technologies. Technol. Forecast. Soc. Change 165:120463. doi: 10.1016/j.techfore.2020.120463

Centobelli, P., Cerchione, R., Vecchio, P., Del Oropallo, E., and Secundo, G. (2021b). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inform. Manag. 103508. doi: 10.1016/j.im.2021.103508

Cerchione, R., Centobelli, P., Riccio, E., Abbate, S., and Oropallo, E. (2022). Blockchain’s coming to hospital to digitalize healthcare services: Designing a distributed electronic health record ecosystem. Technovation. 102480. doi: 10.1016/j.technovation.2022.102480

Cvitić, I., Peraković, D., Periša, M., and Gupta, B. (2021). Ensemble machine learning approach for classification of IoT devices in smart home. Intl. J. Mach. Learn. Cybern. 12, 3179–3202. doi: 10.1007/s13042-020-01241-0

CYBER EDU (2021). What is Malware? ForcePoint. Available online at: https://www.forcepoint.com/cyber-edu/malware (accessed March 20, 2022).

D’Adamo, I., González-Sánchez, R., Medina-Salgado, M. S., and Settembre-Blundo, D. (2021). E-Commerce calls for cyber-security and sustainability: How european citizens look for a trusted online environment. Sustainability 13:6752. doi: 10.3390/su13126752

Dahiya, A., and Gupta, B. B. (2020). An economic incentive-based risk transfer approach for defending against DDoS attacks. Intl. J. E-Serv. Mob. Appl. 12, 60–84. doi: 10.4018/IJESMA.2020070104

den Hond, F., and Moser, C. (2022). Useful servant or dangerous master? Technology in business and society debates. Bus. Soc. 1–30. doi: 10.1177/00076503211068029

Dobrowolska, K. (2020). Modern technology implementation: Costs and benefits. Availble online at: https://archdesk.com/blog/modern-technology-implementation-costs-and-benefits/ (accessed February 2, 2022).

Dupont, B. (2012). The cyber security environment to 2022: Trends, drivers and implications . Available online at: https://ssrn.com/abstract=2208548 (accessed February 20, 2022).

Dykstra, J. (2017). Cyber issues related to social and behavioral sciences for national security. National Security Agency. White Paper . Availble online at: https://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse_177250.pdf (accessed January 2, 2022)

Easydmarc. (2021). Impersonation. easydmarc.com. Available online at: https://easydmarc.com/blog/what-is-an-impersonation-attack (accessed March 20, 2022).

Expert, S. (2021). Cybersecurity, cyberlaw, cybercrime to cost over $10 Trillion by 2025. Available online at: https://securityboulevard.com/2021/03/cybercrime-to-cost-over-10-trillion-by-2025/ (accessed March 20, 2022).

Fortinet (2022). Distributed Denial-of-Service (DDoS) attacks meaning and prevention. Available online at: https://www.fortinet.com/ (accessed March 20, 2022).

Fruhlinger, J. (2022). DDoS attacks: Definition, examples, and techniques. Available online at: https://www.csoonline.com/article/3648530/ddos-attacks-definition-examples-and-techniques.html (accessed March 24, 2022).

Furner, J. (2004). Conceptual Analysis: A method for understanding information as evidence, and evidence as information. Arch. Sci. 4, 233–265. doi: 10.1007/s10502-005-2594-8

Galov, N. (2022). 17+ sinister social engineering statistics for 2022. Available online at: https://webtribunal.net/blog/social-engineering-statistics/#gref (accessed March 20, 2022).

Gargar, D. (2021). Do network layer and application layer DDoS differ. Available online at: https://vaporvm.com/do-network-layer-and-application-layer-ddos-attacks-differ (accessed March 20, 2022).

Gennaro, L. (2022). 68 Useful ecommerce statistics you must know in 2022. Available online at: https://wpforms.com/ecommerce-statistics/ (accessed April 1, 2022).

Giorgi, G., Ariza-Montes, A., Mucci, N., and Leal-Rodríguez, A. L. (2022). The dark side and the light side of technology-related stress and stress related to workplace innovations: From artificial intelligence to business transformations. Intl. J. Environ. Res. Public Health 19:1248. doi: 10.3390/ijerph19031248

Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., and Pospelova, V. (2022). The emerging threat of ai-driven cyber attacks: A Review. Appl. Artif. Intell. 1–34. doi: 10.1080/08839514.2022.2037254

Gull, H., Saeed, S., Iqbal, S. Z., Bamarouf, Y. A., Alqahtani, M. A., Alabbad, D. A., et al. (2022). An empirical study of mobile commerce and customers security perception in Saudi Arabia. Electronics 11:293. doi: 10.3390/electronics11030293

Gupta, B. B., Yadav, K., Razzak, I., Psannis, K., Castiglione, A., and Chang, X. (2021). A novel approach for phishing URLs detection using lexical based machine learning in a real-time environment. Comput. Commun. 175, 47–57. doi: 10.1016/j.comcom.2021.04.023

Henderson, J. P. (2013). Causal analysis based on system theory/CAST Handbook.pdf. Available online at: https://github.com/joelparkerhenderson/causal-analysis-based-on-system-theory/blob/main/CAST_Handbook.pdf (accessed April 15, 2022).

Hepfer, M. (2021). Gaining competitive advantage from cybersecurity. Available online at: https://istari-global.com/insights/perspectives/gaining-competitive-advantage-from-cybersecurity/ (accessed April 2, 2022).

Hepfer, M., and Powell, T. C. (2020). Make cybersecurity a strategic asset. Cambridge, MA: MIT Sloan Management Review.

Hooks, D., Davis, Z., Agrawal, V., and Li, Z. (2022). Exploring factors influencing technology adoption rate at the macro level: A predictive model. Technol. Soc. 68:101826. doi: 10.1016/j.techsoc.2021.101826

Horne, C. A., Ahmad, A., and Maynard, S. B. (2016). “A Theory on information security,” in proceedings of the Australasian Conference on Information Systems. Wollongong, NSW.

Hughes, M. (2021). What is smishing? How text messaging scams work and why a ‘skeptical pause’ can save you. Available online at: https://auth0.com/blog/what-is-smishing/ (accessed March 2, 2022).

Hussien, F. T. A., Rahma, A. M. S., and Wahab, H. B. A. (2022). Design and implement a new secure prototype structure of e-commerce system. Intl. J. Electrical Comput. Eng. 12, 2088–8708.

Ibrahim, M., Shahid, M. K., and Ahmed, S. F. (2014). The Impact of Telecom Services Characteristics on Consumer for Use in Pakistan. Adv. Econ. Bus. 2, 172–179. doi: 10.13189/aeb.2014.020403

Jang-Jaccard, J., and Nepal, S. (2014). A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 80, 973–993. doi: 10.1016/j.jcss.2014.02.005

Jennifer. (2022). Top E-commerce challenges facing SMBs. business news daily. Availble online at: https://www.businessnewsdaily.com/6028-small-ecommerce-challenges.html (accessed March 23, 2022).

Joyce, S. (2022). Four steps to gaining consumer trust in your tech. PWC. Available online at: https://www.pwc.com/us/en/tech-effect/cybersecurity/trusted-tech.html (accessed April 11, 2022).

kaspersky (2022). What are the different types of malware? Resource-Center. Availble online at: https://www.kaspersky.com/resource-center/threats/types-of-malware (accessed April 9, 2022).

Khurana, A. (2019). “Did You Know That There Are 4 Types Of Ecommerce?”. The Balance Small Business . New York, NY: Dotdash.

Kianpour, M., Kowalski, S. J., and Øverby, H. (2021). Systematically understanding cybersecurity economics: A Survey. Sustainability 13:13677. doi: 10.3390/su132413677

Kim, J.-Y., Bu, S.-J., and Cho, S.-B. (2018). Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders. Inform. Sci. 461, 83–102. doi: 10.1016/j.ins.2018.04.092

Koomey, J. (2012). The benefits of information technology outweigh the costs. New York, NY: The New York Times.

Kramer, L. (2022). What strategies do companies employ to increase market share?. Available online at: https://www.investopedia.com/ask/answers/031815/what-strategies-do-companies-employ-increase-market-share.asp (accessed April 20, 2022).

LaCour, J. (2022). Vishing volume increases 554% in 2021. Availble online at: https://www.phishlabs.com/blog/vishing-volume-increases-554-in-2021 (accessed March 27, 2022).

Leveson, N. (2004). A new accident model for engineering safer systems. Saf. Sci. 42, 237–270. doi: 10.1016/S0925-7535(03)00047-X

Li, S., Qin, D., Wu, X., Li, J., Li, B., and Han, W. (2022). False alert detection based on deep learning and machine learning. Int. J. Semant. Web Inf. Syst. 18, 1–21. doi: 10.4018/IJSWIS.297035

Li, X., Voorneveld, M., and de Koster, R. (2022). Business transformation in an age of turbulence–lessons learned from COVID-19. Technol. Forecast. Soc. Change 176:121452. doi: 10.1016/j.techfore.2021.121452

Li, Y., and Liu, Q. (2021). A comprehensive review study of cyber-attacks and cyber security; Emerging trends and recent developments. Energy Rep. 7, 8176–8186. doi: 10.1016/j.egyr.2021.08.126

Lorette, K. (2022). How ecommerce can reduce business transaction costs. Small business. Available online at: https://smallbusiness.chron.com/adobe-creative-cloud-grow-business-13771091.html (accessed April 13, 2022).

Luo, S., and Choi, T. (2022). E-commerce supply chains with considerations of cyber-security: Should governments play a role? Prod. Oper. Manage. 31, 2107–2126. doi: 10.1111/poms.13666

Lutkevich, B. (2021). Network security. Techtarget. Available online at: https://www.techtarget.com/searchsecurity/definition/malware (accessed March 20, 2022).

Metalidou, E., Marinagi, C., Trivellas, P., Eberhagen, N., Skourlas, C., and Giannakopoulos, G. (2014). The human factor of information security: Unintentional damage perspective. Procedia Soc. Behav. Sci. 147, 424–428. doi: 10.1016/j.sbspro.2014.07.133

Metinko, C. (2022). Cybersecurity venture funding surpasses $20B in 2021, fourth quarter smashes record. Available online at: https://news.crunchbase.com/news/cybersecurity-venture-funding-2021-record/ (accessed April 2, 2022).

Mishra, A., Alzoubi, Y. I., Gill, A. Q., and Anwar, M. J. (2022). Cybersecurity enterprises policies: A comparative study. Sensors 22:538. doi: 10.3390/s22020538

Morgan, S. (2017). Cybercrime report, editor-in-chief cybersecurity ventures cybercrime damages will cost the world $6 trillion annually by 2021. Available online at: https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/ (accessed March 2, 2022).

NCSC (2022). Denial of service (DoS) guidance. Available online at: Www.Ncsc.Gov.Uk. https://www.ncsc.gov.uk/collection/denial-service-dos-guidance-collection/understanding-denial-of-service-attacks (accessed April 5, 2022).

Neely, L. S. I. (2017). Threat landscape survey: Users on the front line. Available online at: https://www.sans.org/reading-room/whitepapers/threats/2017-threat- landscape-survey-users-front-line (accessed February 2, 2022).

Nobles, C. (2015). Exploring pilots’ experiences of integrating technologically advanced aircraft within general aviation: A case study. Available online at: http://search.proquest.com.ezproxy.libproxy.db.erau.edu/docview/1658234326?accountid=27203 (accessed March 7, 2022).

OBERO (2022a). E-commerce Sales By Country. Available online at: https://www.oberlo.com/ (accessed April 20, 2022).

OBERO (2022b). Top ecommerce companies. Statistics. Available online at: https://www.oberlo.com/ (accessed April 20, 2022).

OBERO (2022). Top ecommerce companies. Statistics. Available online at: https://www.oberlo.com/ (accessed April 20, 2022).

Olson, E. (2018). When answering the phone exposes you to fraud. New York, NY: The New York Times, 0362–4331.

Pan, X., Yamaguchi, S., and Kageyama, T. (2021). “Machine-learning-based white-hat worm launcher adaptable to large-scale IoT network,” in Proceedinds of the 2021 IEEE 10th Global Conference on Consumer Electronics (Kyoto), 283–286. doi: 10.1109/GCCE53005.2021.9621895

Phishing (2022). What is phishing. Available online at: https://www.phishing.org/what-is-phishing (accessed April 20, 2022).

PURPLESEC (2022). Social engineering. Purplesec.Us. Available online at: https://purplesec.us/resources/cyber-security-statistics/ (accessed April 2, 2022).

Pusey, P., and Sadera, W. A. (2011). Cyberethics, cybersafety, and cybersecurity. J. Digit. Learn. Teach. Educ. 28, 82–85. doi: 10.1080/21532974.2011.10784684

Rahman, S. (2014). Introduction to E-commerce technology in business. Available online at: https://www.grin.com/document/280494 (accessed March 11, 2022).

RAPID7 (2022). Malware attacks: Definition and best practices. Rapid7. Available online at: https://www.rapid7.com/fundamentals/malware-attacks (accessed March 21, 2022).

Reynolds, J. (2000). eCommerce: a critical review. Int. J. Retail Distrib. Manage. 28, 417–444. doi: 10.1108/09590550010349253

Roumani, M. A., and Chun Che, Fung Choejey, P. (2015). “Assessing economic impact due to cyber attacks with system dynamics approach,” in Proccedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Hua Hin: ECTI-CON), 1–6. doi: 10.1109/ECTICon.2015.7207084

Saeed, S., Saman, A., and Norafida, I. (2013). Main human factors affecting information system security. Interdiscip. J. Contemp. Res. Bus. 5, 329–354.

Sanders, A. (2022). What is social engineering and why is it such a threat in 2022? Available online at: https://www.safetydetectives.com/blog/what-is-social-engineering-and-why-is-it-so-dangerous/ (accessed March 21, 2022).

Sayed, A. F., Shahid, M. K., and Ahmad, S. F. (2020). “Adoption of mobile payment application and its impact on business,” in Impact of mobile payment applications and transfers on business (Hershey, PA: IGI-Global), 253–269. doi: 10.4018/978-1-7998-2398-8.ch012

Schatz, D., Bashroush, R., and Wall, J. (2017). Towards a more representative definition of cyber security. J. Digit. Forensics Secur. Law 12, 1558–7215. doi: 10.15394/jdfsl.2017.1476

Security Magazine (2020). 83% of top 30 US retailers have online vulnerabilities, posing cybersecurity threats. Available online at: https://www.securitymagazine.com/ (accessed April 1, 2022).

Securitymagazine (2022). Executive impersonation attacks increased substantially between Q1 2020 and Q1 2021. Available online at: https://www.securitymagazine.com/articles/95206-executive-impersonation-attacks-increased-substantially-between-q1-2020-and-q1-2021 (accessed April 1, 2022).

Shopify (2022). Ecommerce. Encyclopedia/what-is-ecommerce. Available online at: https://www.shopify.com/ (accessed April 1, 2022).

Smart Draw (2022). E-commerce workflow diagram. Available online at: https://www.smartdraw.com/ (accessed March 2, 2022).

Snihur, Y., Lamine, W., and Wright, M. (2021). Educating engineers to develop new business models: Exploiting entrepreneurial opportunities in technology-based firms. Technol. Forecast. Soc. Change 164:119518. doi: 10.1016/j.techfore.2018.11.011

Social-engineer (2022). Social engineering defined”. Available online at: https://www.social-engineer.org/framework/general-discussion/social-engineering-defined/ (accessed March 20, 2022).

Stalmachova, K., Chinoracky, R., and Strenitzerova, M. (2021). Changes in business models caused by digital transformation and the COVID-19 pandemic and possibilities of their measurement—case study. Sustainability 14:127. doi: 10.3390/su14010127

Statista (2022). Retail e-commerce sales worldwide from 2014 to 2024. Available online at: https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales (accessed April 20, 2022).

Strategic Technologies Program (2022). Significant cyber incidents. Available online at: https://www.csis.org/ (accessed April 2, 2022).

Team, E. (2022). Must-know cyber attack statistics and trends, business advice & research. Available online at: https://www.embroker.com/blog/cyber-attack-statistics (accessed March 27, 2022).

Thomas, J. (2016). Systems theoretic process-analysis STPA. Availble online at: http://psas.scripts.mit.edu/home/wp-content/uploads/2016/01/

Thomson, L., Kamalaldin, A., Sjödin, D., and Parida, V. (2022). A maturity framework for autonomous solutions in manufacturing firms: The interplay of technology, ecosystem, and business model. Int. Entrep. Manage. J. 18, 125–152. doi: 10.1007/s11365-020-00717-3

Varga, G. (2021). Understanding data privacy. Available online at: https://cybersecuritymagazine.com/why-should-data-privacy-be-a-top-priority-for-companies/ (accessed April 20, 2022).

Vasupula, N., Munnangi, V., and Daggubati, S. (2022). “Modern privacy risks and protection strategies in data analytics,” in Soft computing and signal processing (Singapore: Springer), 81–89. doi: 10.1007/978-981-16-1249-7_9

Verizon (2017). Data breach investigations report , 10th Edn. Available online at: http://www.verizonenterprise.com/verizon-insights-lab/dbir/2017 (accessed February 20, 2022).

Vinoth, S., Vemula, H. L., Haralayya, B., Mamgain, P., Hasan, M. F., and Naved, M. (2022). Application of cloud computing in banking and e-commerce and related security threats. Mater. Today Proc. 51, 2172–2175. doi: 10.1016/j.matpr.2021.11.121

Wall, W. P. (2022). Global competitiveness. Singapore: Springer Nature. doi: 10.1007/978-981-16-7755-7

Wang, Z., Li, M., Lu, J., and Cheng, X. (2022). Business innovation based on artificial intelligence and blockchain technology. Inf. Process. Manage. 59:102759. doi: 10.1016/j.ipm.2021.102759

Wirth, A. (2017). The economics of cybersecurity. Biomed. Instrum. Technol. 51, 52–59. doi: 10.2345/0899-8205-51.s6.52

Xiao, F., Sun, Y., Du, D., Li, X., and Luo, M. (2020). A novel malware classification method based on crucial behavior. Math. Probl. Eng. 2020, 1–12. doi: 10.1155/2020/6804290

Zende, S. (2022). Digitalization in india prospect and challenges. Int. J. Entrep. Technopreneur (INJETECH) 2, 29–37.

Zhuang, R., Bardas, A. G., DeLoach, S. A., and Ou, X. (2015). “A theory of cyber attacks,” in Proceedings of the second ACM workshop on moving target defense (New York, NY: Association for Computing Machinery), 11–20. doi: 10.1145/2808475.2808478

Zwilling, M., Klien, G., Lesjak, D., Wiechetek, Ł, Cetin, F., and Basim, H. N. (2022). Cyber security awareness, knowledge and behavior: A comparative study. J. Comput. Inf. Syst. 62, 82–97. doi: 10.1080/08874417.2020.1712269

Keywords : cyber security, e-commerce, social engineering, denial of services, malware and attacks on personal data

Citation: Liu X, Ahmad SF, Anser MK, Ke J, Irshad M, Ul-Haq J and Abbas S (2022) Cyber security threats: A never-ending challenge for e-commerce. Front. Psychol. 13:927398. doi: 10.3389/fpsyg.2022.927398

Received: 27 April 2022; Accepted: 20 July 2022; Published: 19 October 2022.

Reviewed by:

Copyright © 2022 Liu, Ahmad, Anser, Ke, Irshad, Ul-Haq and Abbas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Jingying Ke, [email protected]

IMAGES

  1. The 2020 Cyber Security Report

    research papers on cyber security 2020

  2. Novel PhD Research Proposal in Cyber Security [Research Guide]

    research papers on cyber security 2020

  3. PHD RESEARCH TOPIC IN CYBER SECURITY

    research papers on cyber security 2020

  4. Research Cyber Security Topics for Projects With Source Code [Help]

    research papers on cyber security 2020

  5. Securing Endpoints in 2020: Proactive Security with XDR

    research papers on cyber security 2020

  6. Advanced Cyber Security Innovations and Updates For 2020

    research papers on cyber security 2020

VIDEO

  1. COMPUTERWOCHE-Studie "Cyber Security 2020"

  2. Facebook and Instagram in the 2020 U.S. Election

  3. Cyber Security and Privacy Week 6 Quiz Assignment

  4. ManageEngine Overview

  5. AT&T ThreatTraq Special: Your Network's Weakest Point

  6. [Cyber Security] Lecture 1

COMMENTS

  1. How Do You Make an Acknowledgment in a Research Paper?

    To make an acknowledgement in a research paper, a writer should express thanks by using the full or professional names of the people being thanked and should specify exactly how the people being acknowledged helped.

  2. What Is a Good Title for My Research Paper?

    The title of a research paper should outline the purpose of the research, the methods used and the overall tone of the paper. The title is important because it is the first thing that is read. It is important that the title is focused, but ...

  3. What Is a Sample Methodology in a Research Paper?

    The sample methodology in a research paper provides the information to show that the research is valid. It must tell what was done to answer the research question and how the research was done.

  4. (PDF) Research Paper on Cyber Security

    PDF | In the current world that is run by technology and network connections, it is crucial to know what cyber security is and to be able to

  5. Journal of Cybersecurity

    research from 2020 and 2021 published in the Journal of Cybersecurity.

  6. A comprehensive review study of cyber-attacks and cyber security

    (2020) examined the cyber-attack possibility variables for NPPs. In addition

  7. Cyber Security Research Papers

    Cyber Security Research Papers. Master's degree candidates at SANS.edu conduct research that is relevant, has real world impact, and often provides cutting-edge

  8. Cyber risk and cybersecurity: a systematic review of data availability

    ... Security 2020). This research paper reviews the existing literature and open data sources related to cybersecurity and cyber risk, focusing

  9. A Critical Cybersecurity Analysis and Future Research Directions for

    Dos and don'ts of machine learning in computer security. arXiv 2020, arXiv:2010.09470. [Google Scholar].

  10. Covid-19 Pandemic: A New Era Of Cyber Security Threat And

    This paper focuses on some safety precautions to safeguard the personal and organizational data from cyber criminals. Published in: 2020 IEEE Asia-Pacific

  11. cyber security IEEE PAPERS AND PROJECTS-2020

    cyber security-2020-RESEARCH TECHNOLOGIES IEEE PROJECTS PAPERS.

  12. Cyber risk and cybersecurity: a systematic review of data availability

    ... Security 2020). This research paper reviews the existing literature and open data sources related to cybersecurity and cyber risk, focusing on the datasets

  13. Cybersecurity

    Focusing on cyberspace security issues, this open access journal Cybersecurity publishes high quality research and expert reviews to report the latest ...

  14. Cyber security threats: A never-ending challenge for e-commerce

    This study explores the challenge of cyber security threats that e-commerce technology and business are facing. Technology applications for