• Open supplemental data
  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, insights into students’ experiences and perceptions of remote learning methods: from the covid-19 pandemic to best practice for the future.

research paper about online and modular learning

  • 1 Minerva Schools at Keck Graduate Institute, San Francisco, CA, United States
  • 2 Ronin Institute for Independent Scholarship, Montclair, NJ, United States
  • 3 Department of Physics, University of Toronto, Toronto, ON, Canada

This spring, students across the globe transitioned from in-person classes to remote learning as a result of the COVID-19 pandemic. This unprecedented change to undergraduate education saw institutions adopting multiple online teaching modalities and instructional platforms. We sought to understand students’ experiences with and perspectives on those methods of remote instruction in order to inform pedagogical decisions during the current pandemic and in future development of online courses and virtual learning experiences. Our survey gathered quantitative and qualitative data regarding students’ experiences with synchronous and asynchronous methods of remote learning and specific pedagogical techniques associated with each. A total of 4,789 undergraduate participants representing institutions across 95 countries were recruited via Instagram. We find that most students prefer synchronous online classes, and students whose primary mode of remote instruction has been synchronous report being more engaged and motivated. Our qualitative data show that students miss the social aspects of learning on campus, and it is possible that synchronous learning helps to mitigate some feelings of isolation. Students whose synchronous classes include active-learning techniques (which are inherently more social) report significantly higher levels of engagement, motivation, enjoyment, and satisfaction with instruction. Respondents’ recommendations for changes emphasize increased engagement, interaction, and student participation. We conclude that active-learning methods, which are known to increase motivation, engagement, and learning in traditional classrooms, also have a positive impact in the remote-learning environment. Integrating these elements into online courses will improve the student experience.

Introduction

The COVID-19 pandemic has dramatically changed the demographics of online students. Previously, almost all students engaged in online learning elected the online format, starting with individual online courses in the mid-1990s through today’s robust online degree and certificate programs. These students prioritize convenience, flexibility and ability to work while studying and are older than traditional college age students ( Harris and Martin, 2012 ; Levitz, 2016 ). These students also find asynchronous elements of a course are more useful than synchronous elements ( Gillingham and Molinari, 2012 ). In contrast, students who chose to take courses in-person prioritize face-to-face instruction and connection with others and skew considerably younger ( Harris and Martin, 2012 ). This leaves open the question of whether students who prefer to learn in-person but are forced to learn remotely will prefer synchronous or asynchronous methods. One study of student preferences following a switch to remote learning during the COVID-19 pandemic indicates that students enjoy synchronous over asynchronous course elements and find them more effective ( Gillis and Krull, 2020 ). Now that millions of traditional in-person courses have transitioned online, our survey expands the data on student preferences and explores if those preferences align with pedagogical best practices.

An extensive body of research has explored what instructional methods improve student learning outcomes (Fink. 2013). Considerable evidence indicates that active-learning or student-centered approaches result in better learning outcomes than passive-learning or instructor-centered approaches, both in-person and online ( Freeman et al., 2014 ; Chen et al., 2018 ; Davis et al., 2018 ). Active-learning approaches include student activities or discussion in class, whereas passive-learning approaches emphasize extensive exposition by the instructor ( Freeman et al., 2014 ). Constructivist learning theories argue that students must be active participants in creating their own learning, and that listening to expert explanations is seldom sufficient to trigger the neurological changes necessary for learning ( Bostock, 1998 ; Zull, 2002 ). Some studies conclude that, while students learn more via active learning, they may report greater perceptions of their learning and greater enjoyment when passive approaches are used ( Deslauriers et al., 2019 ). We examine student perceptions of remote learning experiences in light of these previous findings.

In this study, we administered a survey focused on student perceptions of remote learning in late May 2020 through the social media account of @unjadedjade to a global population of English speaking undergraduate students representing institutions across 95 countries. We aim to explore how students were being taught, the relationship between pedagogical methods and student perceptions of their experience, and the reasons behind those perceptions. Here we present an initial analysis of the results and share our data set for further inquiry. We find that positive student perceptions correlate with synchronous courses that employ a variety of interactive pedagogical techniques, and that students overwhelmingly suggest behavioral and pedagogical changes that increase social engagement and interaction. We argue that these results support the importance of active learning in an online environment.

Materials and Methods

Participant pool.

Students were recruited through the Instagram account @unjadedjade. This social media platform, run by influencer Jade Bowler, focuses on education, effective study tips, ethical lifestyle, and promotes a positive mindset. For this reason, the audience is presumably academically inclined, and interested in self-improvement. The survey was posted to her account and received 10,563 responses within the first 36 h. Here we analyze the 4,789 of those responses that came from undergraduates. While we did not collect demographic or identifying information, we suspect that women are overrepresented in these data as followers of @unjadedjade are 80% women. A large minority of respondents were from the United Kingdom as Jade Bowler is a British influencer. Specifically, 43.3% of participants attend United Kingdom institutions, followed by 6.7% attending university in the Netherlands, 6.1% in Germany, 5.8% in the United States and 4.2% in Australia. Ninety additional countries are represented in these data (see Supplementary Figure 1 ).

Survey Design

The purpose of this survey is to learn about students’ instructional experiences following the transition to remote learning in the spring of 2020.

This survey was initially created for a student assignment for the undergraduate course Empirical Analysis at Minerva Schools at KGI. That version served as a robust pre-test and allowed for identification of the primary online platforms used, and the four primary modes of learning: synchronous (live) classes, recorded lectures and videos, uploaded or emailed materials, and chat-based communication. We did not adapt any open-ended questions based on the pre-test survey to avoid biasing the results and only corrected language in questions for clarity. We used these data along with an analysis of common practices in online learning to revise the survey. Our revised survey asked students to identify the synchronous and asynchronous pedagogical methods and platforms that they were using for remote learning. Pedagogical methods were drawn from literature assessing active and passive teaching strategies in North American institutions ( Fink, 2013 ; Chen et al., 2018 ; Davis et al., 2018 ). Open-ended questions asked students to describe why they preferred certain modes of learning and how they could improve their learning experience. Students also reported on their affective response to learning and participation using a Likert scale.

The revised survey also asked whether students had responded to the earlier survey. No significant differences were found between responses of those answering for the first and second times (data not shown). See Supplementary Appendix 1 for survey questions. Survey data was collected from 5/21/20 to 5/23/20.

Qualitative Coding

We applied a qualitative coding framework adapted from Gale et al. (2013) to analyze student responses to open-ended questions. Four researchers read several hundred responses and noted themes that surfaced. We then developed a list of themes inductively from the survey data and deductively from the literature on pedagogical practice ( Garrison et al., 1999 ; Zull, 2002 ; Fink, 2013 ; Freeman et al., 2014 ). The initial codebook was revised collaboratively based on feedback from researchers after coding 20–80 qualitative comments each. Before coding their assigned questions, alignment was examined through coding of 20 additional responses. Researchers aligned in identifying the same major themes. Discrepancies in terms identified were resolved through discussion. Researchers continued to meet weekly to discuss progress and alignment. The majority of responses were coded by a single researcher using the final codebook ( Supplementary Table 1 ). All responses to questions 3 (4,318 responses) and 8 (4,704 responses), and 2,512 of 4,776 responses to question 12 were analyzed. Valence was also indicated where necessary (i.e., positive or negative discussion of terms). This paper focuses on the most prevalent themes from our initial analysis of the qualitative responses. The corresponding author reviewed codes to ensure consistency and accuracy of reported data.

Statistical Analysis

The survey included two sets of Likert-scale questions, one consisting of a set of six statements about students’ perceptions of their experiences following the transition to remote learning ( Table 1 ). For each statement, students indicated their level of agreement with the statement on a five-point scale ranging from 1 (“Strongly Disagree”) to 5 (“Strongly Agree”). The second set asked the students to respond to the same set of statements, but about their retroactive perceptions of their experiences with in-person instruction before the transition to remote learning. This set was not the subject of our analysis but is present in the published survey results. To explore correlations among student responses, we used CrossCat analysis to calculate the probability of dependence between Likert-scale responses ( Mansinghka et al., 2016 ).

www.frontiersin.org

Table 1. Likert-scale questions.

Mean values are calculated based on the numerical scores associated with each response. Measures of statistical significance for comparisons between different subgroups of respondents were calculated using a two-sided Mann-Whitney U -test, and p -values reported here are based on this test statistic. We report effect sizes in pairwise comparisons using the common-language effect size, f , which is the probability that the response from a random sample from subgroup 1 is greater than the response from a random sample from subgroup 2. We also examined the effects of different modes of remote learning and technological platforms using ordinal logistic regression. With the exception of the mean values, all of these analyses treat Likert-scale responses as ordinal-scale, rather than interval-scale data.

Students Prefer Synchronous Class Sessions

Students were asked to identify their primary mode of learning given four categories of remote course design that emerged from the pilot survey and across literature on online teaching: live (synchronous) classes, recorded lectures and videos, emailed or uploaded materials, and chats and discussion forums. While 42.7% ( n = 2,045) students identified live classes as their primary mode of learning, 54.6% ( n = 2613) students preferred this mode ( Figure 1 ). Both recorded lectures and live classes were preferred over uploaded materials (6.22%, n = 298) and chat (3.36%, n = 161).

www.frontiersin.org

Figure 1. Actual (A) and preferred (B) primary modes of learning.

In addition to a preference for live classes, students whose primary mode was synchronous were more likely to enjoy the class, feel motivated and engaged, be satisfied with instruction and report higher levels of participation ( Table 2 and Supplementary Figure 2 ). Regardless of primary mode, over two-thirds of students reported they are often distracted during remote courses.

www.frontiersin.org

Table 2. The effect of synchronous vs. asynchronous primary modes of learning on student perceptions.

Variation in Pedagogical Techniques for Synchronous Classes Results in More Positive Perceptions of the Student Learning Experience

To survey the use of passive vs. active instructional methods, students reported the pedagogical techniques used in their live classes. Among the synchronous methods, we identify three different categories ( National Research Council, 2000 ; Freeman et al., 2014 ). Passive methods (P) include lectures, presentations, and explanation using diagrams, white boards and/or other media. These methods all rely on instructor delivery rather than student participation. Our next category represents active learning through primarily one-on-one interactions (A). The methods in this group are in-class assessment, question-and-answer (Q&A), and classroom chat. Group interactions (F) included classroom discussions and small-group activities. Given these categories, Mann-Whitney U pairwise comparisons between the 7 possible combinations and Likert scale responses about student experience showed that the use of a variety of methods resulted in higher ratings of experience vs. the use of a single method whether or not that single method was active or passive ( Table 3 ). Indeed, students whose classes used methods from each category (PAF) had higher ratings of enjoyment, motivation, and satisfaction with instruction than those who only chose any single method ( p < 0.0001) and also rated higher rates of participation and engagement compared to students whose only method was passive (P) or active through one-on-one interactions (A) ( p < 0.00001). Student ratings of distraction were not significantly different for any comparison. Given that sets of Likert responses often appeared significant together in these comparisons, we ran a CrossCat analysis to look at the probability of dependence across Likert responses. Responses have a high probability of dependence on each other, limiting what we can claim about any discrete response ( Supplementary Figure 3 ).

www.frontiersin.org

Table 3. Comparison of combinations of synchronous methods on student perceptions. Effect size (f).

Mann-Whitney U pairwise comparisons were also used to check if improvement in student experience was associated with the number of methods used vs. the variety of types of methods. For every comparison, we found that more methods resulted in higher scores on all Likert measures except distraction ( Table 4 ). Even comparison between four or fewer methods and greater than four methods resulted in a 59% chance that the latter enjoyed the courses more ( p < 0.00001) and 60% chance that they felt more motivated to learn ( p < 0.00001). Students who selected more than four methods ( n = 417) were also 65.1% ( p < 0.00001), 62.9% ( p < 0.00001) and 64.3% ( p < 0.00001) more satisfied with instruction, engaged, and actively participating, respectfully. Therefore, there was an overlap between how the number and variety of methods influenced students’ experiences. Since the number of techniques per category is 2–3, we cannot fully disentangle the effect of number vs. variety. Pairwise comparisons to look at subsets of data with 2–3 methods from a single group vs. 2–3 methods across groups controlled for this but had low sample numbers in most groups and resulted in no significant findings (data not shown). Therefore, from the data we have in our survey, there seems to be an interdependence between number and variety of methods on students’ learning experiences.

www.frontiersin.org

Table 4. Comparison of the number of synchronous methods on student perceptions. Effect size (f).

Variation in Asynchronous Pedagogical Techniques Results in More Positive Perceptions of the Student Learning Experience

Along with synchronous pedagogical methods, students reported the asynchronous methods that were used for their classes. We divided these methods into three main categories and conducted pairwise comparisons. Learning methods include video lectures, video content, and posted study materials. Interacting methods include discussion/chat forums, live office hours, and email Q&A with professors. Testing methods include assignments and exams. Our results again show the importance of variety in students’ perceptions ( Table 5 ). For example, compared to providing learning materials only, providing learning materials, interaction, and testing improved enjoyment ( f = 0.546, p < 0.001), motivation ( f = 0.553, p < 0.0001), satisfaction with instruction ( f = 0.596, p < 0.00001), engagement ( f = 0.572, p < 0.00001) and active participation ( f = 0.563, p < 0.00001) (row 6). Similarly, compared to just being interactive with conversations, the combination of all three methods improved five out of six indicators, except for distraction in class (row 11).

www.frontiersin.org

Table 5. Comparison of combinations of asynchronous methods on student perceptions. Effect size (f).

Ordinal logistic regression was used to assess the likelihood that the platforms students used predicted student perceptions ( Supplementary Table 2 ). Platform choices were based on the answers to open-ended questions in the pre-test survey. The synchronous and asynchronous methods used were consistently more predictive of Likert responses than the specific platforms. Likewise, distraction continued to be our outlier with no differences across methods or platforms.

Students Prefer In-Person and Synchronous Online Learning Largely Due to Social-Emotional Reasoning

As expected, 86.1% (4,123) of survey participants report a preference for in-person courses, while 13.9% (666) prefer online courses. When asked to explain the reasons for their preference, students who prefer in-person courses most often mention the importance of social interaction (693 mentions), engagement (639 mentions), and motivation (440 mentions). These students are also more likely to mention a preference for a fixed schedule (185 mentions) vs. a flexible schedule (2 mentions).

In addition to identifying social reasons for their preference for in-person learning, students’ suggestions for improvements in online learning focus primarily on increasing interaction and engagement, with 845 mentions of live classes, 685 mentions of interaction, 126 calls for increased participation and calls for changes related to these topics such as, “Smaller teaching groups for live sessions so that everyone is encouraged to talk as some people don’t say anything and don’t participate in group work,” and “Make it less of the professor reading the pdf that was given to us and more interaction.”

Students who prefer online learning primarily identify independence and flexibility (214 mentions) and reasons related to anxiety and discomfort in in-person settings (41 mentions). Anxiety was only mentioned 12 times in the much larger group that prefers in-person learning.

The preference for synchronous vs. asynchronous modes of learning follows similar trends ( Table 6 ). Students who prefer live classes mention engagement and interaction most often while those who prefer recorded lectures mention flexibility.

www.frontiersin.org

Table 6. Most prevalent themes for students based on their preferred mode of remote learning.

Student Perceptions Align With Research on Active Learning

The first, and most robust, conclusion is that incorporation of active-learning methods correlates with more positive student perceptions of affect and engagement. We can see this clearly in the substantial differences on a number of measures, where students whose classes used only passive-learning techniques reported lower levels of engagement, satisfaction, participation, and motivation when compared with students whose classes incorporated at least some active-learning elements. This result is consistent with prior research on the value of active learning ( Freeman et al., 2014 ).

Though research shows that student learning improves in active learning classes, on campus, student perceptions of their learning, enjoyment, and satisfaction with instruction are often lower in active-learning courses ( Deslauriers et al., 2019 ). Our finding that students rate enjoyment and satisfaction with instruction higher for active learning online suggests that the preference for passive lectures on campus relies on elements outside of the lecture itself. That might include the lecture hall environment, the social physical presence of peers, or normalization of passive lectures as the expected mode for on-campus classes. This implies that there may be more buy-in for active learning online vs. in-person.

A second result from our survey is that student perceptions of affect and engagement are associated with students experiencing a greater diversity of learning modalities. We see this in two different results. First, in addition to the fact that classes that include active learning outperform classes that rely solely on passive methods, we find that on all measures besides distraction, the highest student ratings are associated with a combination of active and passive methods. Second, we find that these higher scores are associated with classes that make use of a larger number of different methods.

This second result suggests that students benefit from classes that make use of multiple different techniques, possibly invoking a combination of passive and active methods. However, it is unclear from our data whether this effect is associated specifically with combining active and passive methods, or if it is associated simply with the use of multiple different methods, irrespective of whether those methods are active, passive, or some combination. The problem is that the number of methods used is confounded with the diversity of methods (e.g., it is impossible for a classroom using only one method to use both active and passive methods). In an attempt to address this question, we looked separately at the effect of number and diversity of methods while holding the other constant. Across a large number of such comparisons, we found few statistically significant differences, which may be a consequence of the fact that each comparison focused on a small subset of the data.

Thus, our data suggests that using a greater diversity of learning methods in the classroom may lead to better student outcomes. This is supported by research on student attention span which suggests varying delivery after 10–15 min to retain student’s attention ( Bradbury, 2016 ). It is likely that this is more relevant for online learning where students report high levels of distraction across methods, modalities, and platforms. Given that number and variety are key, and there are few passive learning methods, we can assume that some combination of methods that includes active learning improves student experience. However, it is not clear whether we should predict that this benefit would come simply from increasing the number of different methods used, or if there are benefits specific to combining particular methods. Disentangling these effects would be an interesting avenue for future research.

Students Value Social Presence in Remote Learning

Student responses across our open-ended survey questions show a striking difference in reasons for their preferences compared with traditional online learners who prefer flexibility ( Harris and Martin, 2012 ; Levitz, 2016 ). Students reasons for preferring in-person classes and synchronous remote classes emphasize the desire for social interaction and echo the research on the importance of social presence for learning in online courses.

Short et al. (1976) outlined Social Presence Theory in depicting students’ perceptions of each other as real in different means of telecommunications. These ideas translate directly to questions surrounding online education and pedagogy in regards to educational design in networked learning where connection across learners and instructors improves learning outcomes especially with “Human-Human interaction” ( Goodyear, 2002 , 2005 ; Tu, 2002 ). These ideas play heavily into asynchronous vs. synchronous learning, where Tu reports students having positive responses to both synchronous “real-time discussion in pleasantness, responsiveness and comfort with familiar topics” and real-time discussions edging out asynchronous computer-mediated communications in immediate replies and responsiveness. Tu’s research indicates that students perceive more interaction with synchronous mediums such as discussions because of immediacy which enhances social presence and support the use of active learning techniques ( Gunawardena, 1995 ; Tu, 2002 ). Thus, verbal immediacy and communities with face-to-face interactions, such as those in synchronous learning classrooms, lessen the psychological distance of communicators online and can simultaneously improve instructional satisfaction and reported learning ( Gunawardena and Zittle, 1997 ; Richardson and Swan, 2019 ; Shea et al., 2019 ). While synchronous learning may not be ideal for traditional online students and a subset of our participants, this research suggests that non-traditional online learners are more likely to appreciate the value of social presence.

Social presence also connects to the importance of social connections in learning. Too often, current systems of education emphasize course content in narrow ways that fail to embrace the full humanity of students and instructors ( Gay, 2000 ). With the COVID-19 pandemic leading to further social isolation for many students, the importance of social presence in courses, including live interactions that build social connections with classmates and with instructors, may be increased.

Limitations of These Data

Our undergraduate data consisted of 4,789 responses from 95 different countries, an unprecedented global scale for research on online learning. However, since respondents were followers of @unjadedjade who focuses on learning and wellness, these respondents may not represent the average student. Biases in survey responses are often limited by their recruitment techniques and our bias likely resulted in more robust and thoughtful responses to free-response questions and may have influenced the preference for synchronous classes. It is unlikely that it changed students reporting on remote learning pedagogical methods since those are out of student control.

Though we surveyed a global population, our design was rooted in literature assessing pedagogy in North American institutions. Therefore, our survey may not represent a global array of teaching practices.

This survey was sent out during the initial phase of emergency remote learning for most countries. This has two important implications. First, perceptions of remote learning may be clouded by complications of the pandemic which has increased social, mental, and financial stresses globally. Future research could disaggregate the impact of the pandemic from students’ learning experiences with a more detailed and holistic analysis of the impact of the pandemic on students.

Second, instructors, students and institutions were not able to fully prepare for effective remote education in terms of infrastructure, mentality, curriculum building, and pedagogy. Therefore, student experiences reflect this emergency transition. Single-modality courses may correlate with instructors who lacked the resources or time to learn or integrate more than one modality. Regardless, the main insights of this research align well with the science of teaching and learning and can be used to inform both education during future emergencies and course development for online programs that wish to attract traditional college students.

Global Student Voices Improve Our Understanding of the Experience of Emergency Remote Learning

Our survey shows that global student perspectives on remote learning agree with pedagogical best practices, breaking with the often-found negative reactions of students to these practices in traditional classrooms ( Shekhar et al., 2020 ). Our analysis of open-ended questions and preferences show that a majority of students prefer pedagogical approaches that promote both active learning and social interaction. These results can serve as a guide to instructors as they design online classes, especially for students whose first choice may be in-person learning. Indeed, with the near ubiquitous adoption of remote learning during the COVID-19 pandemic, remote learning may be the default for colleges during temporary emergencies. This has already been used at the K-12 level as snow days become virtual learning days ( Aspergren, 2020 ).

In addition to informing pedagogical decisions, the results of this survey can be used to inform future research. Although we survey a global population, our recruitment method selected for students who are English speakers, likely majority female, and have an interest in self-improvement. Repeating this study with a more diverse and representative sample of university students could improve the generalizability of our findings. While the use of a variety of pedagogical methods is better than a single method, more research is needed to determine what the optimal combinations and implementations are for courses in different disciplines. Though we identified social presence as the major trend in student responses, the over 12,000 open-ended responses from students could be analyzed in greater detail to gain a more nuanced understanding of student preferences and suggestions for improvement. Likewise, outliers could shed light on the diversity of student perspectives that we may encounter in our own classrooms. Beyond this, our findings can inform research that collects demographic data and/or measures learning outcomes to understand the impact of remote learning on different populations.

Importantly, this paper focuses on a subset of responses from the full data set which includes 10,563 students from secondary school, undergraduate, graduate, or professional school and additional questions about in-person learning. Our full data set is available here for anyone to download for continued exploration: https://dataverse.harvard.edu/dataset.xhtml?persistentId= doi: 10.7910/DVN/2TGOPH .

Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics Statement

Ethical review and approval was not required for the study on human participants in accordance with the local legislation and institutional requirements. The patients/participants provided their written informed consent to participate in this study.

Author Contributions

GS: project lead, survey design, qualitative coding, writing, review, and editing. TN: data analysis, writing, review, and editing. CN and PB: qualitative coding. JW: data analysis, writing, and editing. CS: writing, review, and editing. EV and KL: original survey design and qualitative coding. PP: data analysis. JB: original survey design and survey distribution. HH: data analysis. MP: writing. All authors contributed to the article and approved the submitted version.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

We want to thank Minerva Schools at KGI for providing funding for summer undergraduate research internships. We also want to thank Josh Fost and Christopher V. H.-H. Chen for discussion that helped shape this project.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feduc.2021.647986/full#supplementary-material

Aspergren, E. (2020). Snow Days Canceled Because of COVID-19 Online School? Not in These School Districts.sec. Education. USA Today. Available online at: https://www.usatoday.com/story/news/education/2020/12/15/covid-school-canceled-snow-day-online-learning/3905780001/ (accessed December 15, 2020).

Google Scholar

Bostock, S. J. (1998). Constructivism in mass higher education: a case study. Br. J. Educ. Technol. 29, 225–240. doi: 10.1111/1467-8535.00066

CrossRef Full Text | Google Scholar

Bradbury, N. A. (2016). Attention span during lectures: 8 seconds, 10 minutes, or more? Adv. Physiol. Educ. 40, 509–513. doi: 10.1152/advan.00109.2016

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, B., Bastedo, K., and Howard, W. (2018). Exploring best practices for online STEM courses: active learning, interaction & assessment design. Online Learn. 22, 59–75. doi: 10.24059/olj.v22i2.1369

Davis, D., Chen, G., Hauff, C., and Houben, G.-J. (2018). Activating learning at scale: a review of innovations in online learning strategies. Comput. Educ. 125, 327–344. doi: 10.1016/j.compedu.2018.05.019

Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K., and Kestin, G. (2019). Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proc. Natl. Acad. Sci. 116, 19251–19257. doi: 10.1073/pnas.1821936116

Fink, L. D. (2013). Creating Significant Learning Experiences: An Integrated Approach to Designing College Courses. Somerset, NJ: John Wiley & Sons, Incorporated.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., et al. (2014). Active learning increases student performance in science, engineering, and mathematics. Proc. Natl. Acad. Sci. 111, 8410–8415. doi: 10.1073/pnas.1319030111

Gale, N. K., Heath, G., Cameron, E., Rashid, S., and Redwood, S. (2013). Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med. Res. Methodol. 13:117. doi: 10.1186/1471-2288-13-117

Garrison, D. R., Anderson, T., and Archer, W. (1999). Critical inquiry in a text-based environment: computer conferencing in higher education. Internet High. Educ. 2, 87–105. doi: 10.1016/S1096-7516(00)00016-6

Gay, G. (2000). Culturally Responsive Teaching: Theory, Research, and Practice. Multicultural Education Series. New York, NY: Teachers College Press.

Gillingham, and Molinari, C. (2012). Online courses: student preferences survey. Internet Learn. 1, 36–45. doi: 10.18278/il.1.1.4

Gillis, A., and Krull, L. M. (2020). COVID-19 remote learning transition in spring 2020: class structures, student perceptions, and inequality in college courses. Teach. Sociol. 48, 283–299. doi: 10.1177/0092055X20954263

Goodyear, P. (2002). “Psychological foundations for networked learning,” in Networked Learning: Perspectives and Issues. Computer Supported Cooperative Work , eds C. Steeples and C. Jones (London: Springer), 49–75. doi: 10.1007/978-1-4471-0181-9_4

Goodyear, P. (2005). Educational design and networked learning: patterns, pattern languages and design practice. Australas. J. Educ. Technol. 21, 82–101. doi: 10.14742/ajet.1344

Gunawardena, C. N. (1995). Social presence theory and implications for interaction and collaborative learning in computer conferences. Int. J. Educ. Telecommun. 1, 147–166.

Gunawardena, C. N., and Zittle, F. J. (1997). Social presence as a predictor of satisfaction within a computer mediated conferencing environment. Am. J. Distance Educ. 11, 8–26. doi: 10.1080/08923649709526970

Harris, H. S., and Martin, E. (2012). Student motivations for choosing online classes. Int. J. Scholarsh. Teach. Learn. 6, 1–8. doi: 10.20429/ijsotl.2012.060211

Levitz, R. N. (2016). 2015-16 National Online Learners Satisfaction and Priorities Report. Cedar Rapids: Ruffalo Noel Levitz, 12.

Mansinghka, V., Shafto, P., Jonas, E., Petschulat, C., Gasner, M., and Tenenbaum, J. B. (2016). CrossCat: a fully Bayesian nonparametric method for analyzing heterogeneous, high dimensional data. J. Mach. Learn. Res. 17, 1–49. doi: 10.1007/978-0-387-69765-9_7

National Research Council (2000). How People Learn: Brain, Mind, Experience, and School: Expanded Edition. Washington, DC: National Academies Press, doi: 10.17226/9853

Richardson, J. C., and Swan, K. (2019). Examining social presence in online courses in relation to students’ perceived learning and satisfaction. Online Learn. 7, 68–88. doi: 10.24059/olj.v7i1.1864

Shea, P., Pickett, A. M., and Pelz, W. E. (2019). A Follow-up investigation of ‘teaching presence’ in the suny learning network. Online Learn. 7, 73–75. doi: 10.24059/olj.v7i2.1856

Shekhar, P., Borrego, M., DeMonbrun, M., Finelli, C., Crockett, C., and Nguyen, K. (2020). Negative student response to active learning in STEM classrooms: a systematic review of underlying reasons. J. Coll. Sci. Teach. 49, 45–54.

Short, J., Williams, E., and Christie, B. (1976). The Social Psychology of Telecommunications. London: John Wiley & Sons.

Tu, C.-H. (2002). The measurement of social presence in an online learning environment. Int. J. E Learn. 1, 34–45. doi: 10.17471/2499-4324/421

Zull, J. E. (2002). The Art of Changing the Brain: Enriching Teaching by Exploring the Biology of Learning , 1st Edn. Sterling, VA: Stylus Publishing.

Keywords : online learning, COVID-19, active learning, higher education, pedagogy, survey, international

Citation: Nguyen T, Netto CLM, Wilkins JF, Bröker P, Vargas EE, Sealfon CD, Puthipiroj P, Li KS, Bowler JE, Hinson HR, Pujar M and Stein GM (2021) Insights Into Students’ Experiences and Perceptions of Remote Learning Methods: From the COVID-19 Pandemic to Best Practice for the Future. Front. Educ. 6:647986. doi: 10.3389/feduc.2021.647986

Received: 30 December 2020; Accepted: 09 March 2021; Published: 09 April 2021.

Reviewed by:

Copyright © 2021 Nguyen, Netto, Wilkins, Bröker, Vargas, Sealfon, Puthipiroj, Li, Bowler, Hinson, Pujar and Stein. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Geneva M. Stein, [email protected]

This article is part of the Research Topic

Covid-19 and Beyond: From (Forced) Remote Teaching and Learning to ‘The New Normal’ in Higher Education

Advertisement

Advertisement

The effects of online education on academic success: A meta-analysis study

  • Published: 06 September 2021
  • Volume 27 , pages 429–450, ( 2022 )

Cite this article

  • Hakan Ulum   ORCID: orcid.org/0000-0002-1398-6935 1  

74k Accesses

21 Citations

11 Altmetric

Explore all metrics

The purpose of this study is to analyze the effect of online education, which has been extensively used on student achievement since the beginning of the pandemic. In line with this purpose, a meta-analysis of the related studies focusing on the effect of online education on students’ academic achievement in several countries between the years 2010 and 2021 was carried out. Furthermore, this study will provide a source to assist future studies with comparing the effect of online education on academic achievement before and after the pandemic. This meta-analysis study consists of 27 studies in total. The meta-analysis involves the studies conducted in the USA, Taiwan, Turkey, China, Philippines, Ireland, and Georgia. The studies included in the meta-analysis are experimental studies, and the total sample size is 1772. In the study, the funnel plot, Duval and Tweedie’s Trip and Fill Analysis, Orwin’s Safe N Analysis, and Egger’s Regression Test were utilized to determine the publication bias, which has been found to be quite low. Besides, Hedge’s g statistic was employed to measure the effect size for the difference between the means performed in accordance with the random effects model. The results of the study show that the effect size of online education on academic achievement is on a medium level. The heterogeneity test results of the meta-analysis study display that the effect size does not differ in terms of class level, country, online education approaches, and lecture moderators.

Avoid common mistakes on your manuscript.

1 Introduction

Information and communication technologies have become a powerful force in transforming the educational settings around the world. The pandemic has been an important factor in transferring traditional physical classrooms settings through adopting information and communication technologies and has also accelerated the transformation. The literature supports that learning environments connected to information and communication technologies highly satisfy students. Therefore, we need to keep interest in technology-based learning environments. Clearly, technology has had a huge impact on young people's online lives. This digital revolution can synergize the educational ambitions and interests of digitally addicted students. In essence, COVID-19 has provided us with an opportunity to embrace online learning as education systems have to keep up with the rapid emergence of new technologies.

Information and communication technologies that have an effect on all spheres of life are also actively included in the education field. With the recent developments, using technology in education has become inevitable due to personal and social reasons (Usta, 2011a ). Online education may be given as an example of using information and communication technologies as a consequence of the technological developments. Also, it is crystal clear that online learning is a popular way of obtaining instruction (Demiralay et al., 2016 ; Pillay et al., 2007 ), which is defined by Horton ( 2000 ) as a way of education that is performed through a web browser or an online application without requiring an extra software or a learning source. Furthermore, online learning is described as a way of utilizing the internet to obtain the related learning sources during the learning process, to interact with the content, the teacher, and other learners, as well as to get support throughout the learning process (Ally, 2004 ). Online learning has such benefits as learning independently at any time and place (Vrasidas & MsIsaac, 2000 ), granting facility (Poole, 2000 ), flexibility (Chizmar & Walbert, 1999 ), self-regulation skills (Usta, 2011b ), learning with collaboration, and opportunity to plan self-learning process.

Even though online education practices have not been comprehensive as it is now, internet and computers have been used in education as alternative learning tools in correlation with the advances in technology. The first distance education attempt in the world was initiated by the ‘Steno Courses’ announcement published in Boston newspaper in 1728. Furthermore, in the nineteenth century, Sweden University started the “Correspondence Composition Courses” for women, and University Correspondence College was afterwards founded for the correspondence courses in 1843 (Arat & Bakan, 2011 ). Recently, distance education has been performed through computers, assisted by the facilities of the internet technologies, and soon, it has evolved into a mobile education practice that is emanating from progress in the speed of internet connection, and the development of mobile devices.

With the emergence of pandemic (Covid-19), face to face education has almost been put to a halt, and online education has gained significant importance. The Microsoft management team declared to have 750 users involved in the online education activities on the 10 th March, just before the pandemic; however, on March 24, they informed that the number of users increased significantly, reaching the number of 138,698 users (OECD, 2020 ). This event supports the view that it is better to commonly use online education rather than using it as a traditional alternative educational tool when students do not have the opportunity to have a face to face education (Geostat, 2019 ). The period of Covid-19 pandemic has emerged as a sudden state of having limited opportunities. Face to face education has stopped in this period for a long time. The global spread of Covid-19 affected more than 850 million students all around the world, and it caused the suspension of face to face education. Different countries have proposed several solutions in order to maintain the education process during the pandemic. Schools have had to change their curriculum, and many countries supported the online education practices soon after the pandemic. In other words, traditional education gave its way to online education practices. At least 96 countries have been motivated to access online libraries, TV broadcasts, instructions, sources, video lectures, and online channels (UNESCO, 2020 ). In such a painful period, educational institutions went through online education practices by the help of huge companies such as Microsoft, Google, Zoom, Skype, FaceTime, and Slack. Thus, online education has been discussed in the education agenda more intensively than ever before.

Although online education approaches were not used as comprehensively as it has been used recently, it was utilized as an alternative learning approach in education for a long time in parallel with the development of technology, internet and computers. The academic achievement of the students is often aimed to be promoted by employing online education approaches. In this regard, academicians in various countries have conducted many studies on the evaluation of online education approaches and published the related results. However, the accumulation of scientific data on online education approaches creates difficulties in keeping, organizing and synthesizing the findings. In this research area, studies are being conducted at an increasing rate making it difficult for scientists to be aware of all the research outside of their ​​expertise. Another problem encountered in the related study area is that online education studies are repetitive. Studies often utilize slightly different methods, measures, and/or examples to avoid duplication. This erroneous approach makes it difficult to distinguish between significant differences in the related results. In other words, if there are significant differences in the results of the studies, it may be difficult to express what variety explains the differences in these results. One obvious solution to these problems is to systematically review the results of various studies and uncover the sources. One method of performing such systematic syntheses is the application of meta-analysis which is a methodological and statistical approach to draw conclusions from the literature. At this point, how effective online education applications are in increasing the academic success is an important detail. Has online education, which is likely to be encountered frequently in the continuing pandemic period, been successful in the last ten years? If successful, how much was the impact? Did different variables have an impact on this effect? Academics across the globe have carried out studies on the evaluation of online education platforms and publishing the related results (Chiao et al., 2018 ). It is quite important to evaluate the results of the studies that have been published up until now, and that will be published in the future. Has the online education been successful? If it has been, how big is the impact? Do the different variables affect this impact? What should we consider in the next coming online education practices? These questions have all motivated us to carry out this study. We have conducted a comprehensive meta-analysis study that tries to provide a discussion platform on how to develop efficient online programs for educators and policy makers by reviewing the related studies on online education, presenting the effect size, and revealing the effect of diverse variables on the general impact.

There have been many critical discussions and comprehensive studies on the differences between online and face to face learning; however, the focus of this paper is different in the sense that it clarifies the magnitude of the effect of online education and teaching process, and it represents what factors should be controlled to help increase the effect size. Indeed, the purpose here is to provide conscious decisions in the implementation of the online education process.

The general impact of online education on the academic achievement will be discovered in the study. Therefore, this will provide an opportunity to get a general overview of the online education which has been practiced and discussed intensively in the pandemic period. Moreover, the general impact of online education on academic achievement will be analyzed, considering different variables. In other words, the current study will allow to totally evaluate the study results from the related literature, and to analyze the results considering several cultures, lectures, and class levels. Considering all the related points, this study seeks to answer the following research questions:

What is the effect size of online education on academic achievement?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the country?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the class level?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the lecture?

How do the effect sizes of online education on academic achievement change according to the moderator variable of the online education approaches?

This study aims at determining the effect size of online education, which has been highly used since the beginning of the pandemic, on students’ academic achievement in different courses by using a meta-analysis method. Meta-analysis is a synthesis method that enables gathering of several study results accurately and efficiently, and getting the total results in the end (Tsagris & Fragkos, 2018 ).

2.1 Selecting and coding the data (studies)

The required literature for the meta-analysis study was reviewed in July, 2020, and the follow-up review was conducted in September, 2020. The purpose of the follow-up review was to include the studies which were published in the conduction period of this study, and which met the related inclusion criteria. However, no study was encountered to be included in the follow-up review.

In order to access the studies in the meta-analysis, the databases of Web of Science, ERIC, and SCOPUS were reviewed by utilizing the keywords ‘online learning and online education’. Not every database has a search engine that grants access to the studies by writing the keywords, and this obstacle was considered to be an important problem to be overcome. Therefore, a platform that has a special design was utilized by the researcher. With this purpose, through the open access system of Cukurova University Library, detailed reviews were practiced using EBSCO Information Services (EBSCO) that allow reviewing the whole collection of research through a sole searching box. Since the fundamental variables of this study are online education and online learning, the literature was systematically reviewed in the related databases (Web of Science, ERIC, and SCOPUS) by referring to the keywords. Within this scope, 225 articles were accessed, and the studies were included in the coding key list formed by the researcher. The name of the researchers, the year, the database (Web of Science, ERIC, and SCOPUS), the sample group and size, the lectures that the academic achievement was tested in, the country that the study was conducted in, and the class levels were all included in this coding key.

The following criteria were identified to include 225 research studies which were coded based on the theoretical basis of the meta-analysis study: (1) The studies should be published in the refereed journals between the years 2020 and 2021, (2) The studies should be experimental studies that try to determine the effect of online education and online learning on academic achievement, (3) The values of the stated variables or the required statistics to calculate these values should be stated in the results of the studies, and (4) The sample group of the study should be at a primary education level. These criteria were also used as the exclusion criteria in the sense that the studies that do not meet the required criteria were not included in the present study.

After the inclusion criteria were determined, a systematic review process was conducted, following the year criterion of the study by means of EBSCO. Within this scope, 290,365 studies that analyze the effect of online education and online learning on academic achievement were accordingly accessed. The database (Web of Science, ERIC, and SCOPUS) was also used as a filter by analyzing the inclusion criteria. Hence, the number of the studies that were analyzed was 58,616. Afterwards, the keyword ‘primary education’ was used as the filter and the number of studies included in the study decreased to 3152. Lastly, the literature was reviewed by using the keyword ‘academic achievement’ and 225 studies were accessed. All the information of 225 articles was included in the coding key.

It is necessary for the coders to review the related studies accurately and control the validity, safety, and accuracy of the studies (Stewart & Kamins, 2001 ). Within this scope, the studies that were determined based on the variables used in this study were first reviewed by three researchers from primary education field, then the accessed studies were combined and processed in the coding key by the researcher. All these studies that were processed in the coding key were analyzed in accordance with the inclusion criteria by all the researchers in the meetings, and it was decided that 27 studies met the inclusion criteria (Atici & Polat, 2010 ; Carreon, 2018 ; Ceylan & Elitok Kesici, 2017 ; Chae & Shin, 2016 ; Chiang et al. 2014 ; Ercan, 2014 ; Ercan et al., 2016 ; Gwo-Jen et al., 2018 ; Hayes & Stewart, 2016 ; Hwang et al., 2012 ; Kert et al., 2017 ; Lai & Chen, 2010 ; Lai et al., 2015 ; Meyers et al., 2015 ; Ravenel et al., 2014 ; Sung et al., 2016 ; Wang & Chen, 2013 ; Yu, 2019 ; Yu & Chen, 2014 ; Yu & Pan, 2014 ; Yu et al., 2010 ; Zhong et al., 2017 ). The data from the studies meeting the inclusion criteria were independently processed in the second coding key by three researchers, and consensus meetings were arranged for further discussion. After the meetings, researchers came to an agreement that the data were coded accurately and precisely. Having identified the effect sizes and heterogeneity of the study, moderator variables that will show the differences between the effect sizes were determined. The data related to the determined moderator variables were added to the coding key by three researchers, and a new consensus meeting was arranged. After the meeting, researchers came to an agreement that moderator variables were coded accurately and precisely.

2.2 Study group

27 studies are included in the meta-analysis. The total sample size of the studies that are included in the analysis is 1772. The characteristics of the studies included are given in Table 1 .

2.3 Publication bias

Publication bias is the low capability of published studies on a research subject to represent all completed studies on the same subject (Card, 2011 ; Littell et al., 2008 ). Similarly, publication bias is the state of having a relationship between the probability of the publication of a study on a subject, and the effect size and significance that it produces. Within this scope, publication bias may occur when the researchers do not want to publish the study as a result of failing to obtain the expected results, or not being approved by the scientific journals, and consequently not being included in the study synthesis (Makowski et al., 2019 ). The high possibility of publication bias in a meta-analysis study negatively affects (Pecoraro, 2018 ) the accuracy of the combined effect size, causing the average effect size to be reported differently than it should be (Borenstein et al., 2009 ). For this reason, the possibility of publication bias in the included studies was tested before determining the effect sizes of the relationships between the stated variables. The possibility of publication bias of this meta-analysis study was analyzed by using the funnel plot, Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test.

2.4 Selecting the model

After determining the probability of publication bias of this meta-analysis study, the statistical model used to calculate the effect sizes was selected. The main approaches used in the effect size calculations according to the differentiation level of inter-study variance are fixed and random effects models (Pigott, 2012 ). Fixed effects model refers to the homogeneity of the characteristics of combined studies apart from the sample sizes, while random effects model refers to the parameter diversity between the studies (Cumming, 2012 ). While calculating the average effect size in the random effects model (Deeks et al., 2008 ) that is based on the assumption that effect predictions of different studies are only the result of a similar distribution, it is necessary to consider several situations such as the effect size apart from the sample error of combined studies, characteristics of the participants, duration, scope, and pattern of the study (Littell et al., 2008 ). While deciding the model in the meta-analysis study, the assumptions on the sample characteristics of the studies included in the analysis and the inferences that the researcher aims to make should be taken into consideration. The fact that the sample characteristics of the studies conducted in the field of social sciences are affected by various parameters shows that using random effects model is more appropriate in this sense. Besides, it is stated that the inferences made with the random effects model are beyond the studies included in the meta-analysis (Field, 2003 ; Field & Gillett, 2010 ). Therefore, using random effects model also contributes to the generalization of research data. The specified criteria for the statistical model selection show that according to the nature of the meta-analysis study, the model should be selected just before the analysis (Borenstein et al., 2007 ; Littell et al., 2008 ). Within this framework, it was decided to make use of the random effects model, considering that the students who are the samples of the studies included in the meta-analysis are from different countries and cultures, the sample characteristics of the studies differ, and the patterns and scopes of the studies vary as well.

2.5 Heterogeneity

Meta-analysis facilitates analyzing the research subject with different parameters by showing the level of diversity between the included studies. Within this frame, whether there is a heterogeneous distribution between the studies included in the study or not has been evaluated in the present study. The heterogeneity of the studies combined in this meta-analysis study has been determined through Q and I 2 tests. Q test evaluates the random distribution probability of the differences between the observed results (Deeks et al., 2008 ). Q value exceeding 2 value calculated according to the degree of freedom and significance, indicates the heterogeneity of the combined effect sizes (Card, 2011 ). I 2 test, which is the complementary of the Q test, shows the heterogeneity amount of the effect sizes (Cleophas & Zwinderman, 2017 ). I 2 value being higher than 75% is explained as high level of heterogeneity.

In case of encountering heterogeneity in the studies included in the meta-analysis, the reasons of heterogeneity can be analyzed by referring to the study characteristics. The study characteristics which may be related to the heterogeneity between the included studies can be interpreted through subgroup analysis or meta-regression analysis (Deeks et al., 2008 ). While determining the moderator variables, the sufficiency of the number of variables, the relationship between the moderators, and the condition to explain the differences between the results of the studies have all been considered in the present study. Within this scope, it was predicted in this meta-analysis study that the heterogeneity can be explained with the country, class level, and lecture moderator variables of the study in terms of the effect of online education, which has been highly used since the beginning of the pandemic, and it has an impact on the students’ academic achievement in different lectures. Some subgroups were evaluated and categorized together, considering that the number of effect sizes of the sub-dimensions of the specified variables is not sufficient to perform moderator analysis (e.g. the countries where the studies were conducted).

2.6 Interpreting the effect sizes

Effect size is a factor that shows how much the independent variable affects the dependent variable positively or negatively in each included study in the meta-analysis (Dinçer, 2014 ). While interpreting the effect sizes obtained from the meta-analysis, the classifications of Cohen et al. ( 2007 ) have been utilized. The case of differentiating the specified relationships of the situation of the country, class level, and school subject variables of the study has been identified through the Q test, degree of freedom, and p significance value Fig.  1 and 2 .

3 Findings and results

The purpose of this study is to determine the effect size of online education on academic achievement. Before determining the effect sizes in the study, the probability of publication bias of this meta-analysis study was analyzed by using the funnel plot, Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test.

When the funnel plots are examined, it is seen that the studies included in the analysis are distributed symmetrically on both sides of the combined effect size axis, and they are generally collected in the middle and lower sections. The probability of publication bias is low according to the plots. However, since the results of the funnel scatter plots may cause subjective interpretations, they have been supported by additional analyses (Littell et al., 2008 ). Therefore, in order to provide an extra proof for the probability of publication bias, it has been analyzed through Orwin’s Safe N Analysis, Duval and Tweedie’s Trip and Fill Analysis, and Egger’s Regression Test (Table 2 ).

Table 2 consists of the results of the rates of publication bias probability before counting the effect size of online education on academic achievement. According to the table, Orwin Safe N analysis results show that it is not necessary to add new studies to the meta-analysis in order for Hedges g to reach a value outside the range of ± 0.01. The Duval and Tweedie test shows that excluding the studies that negatively affect the symmetry of the funnel scatter plots for each meta-analysis or adding their exact symmetrical equivalents does not significantly differentiate the calculated effect size. The insignificance of the Egger tests results reveals that there is no publication bias in the meta-analysis study. The results of the analysis indicate the high internal validity of the effect sizes and the adequacy of representing the studies conducted on the relevant subject.

In this study, it was aimed to determine the effect size of online education on academic achievement after testing the publication bias. In line with the first purpose of the study, the forest graph regarding the effect size of online education on academic achievement is shown in Fig.  3 , and the statistics regarding the effect size are given in Table 3 .

figure 1

The flow chart of the scanning and selection process of the studies

figure 2

Funnel plot graphics representing the effect size of the effects of online education on academic success

figure 3

Forest graph related to the effect size of online education on academic success

The square symbols in the forest graph in Fig.  3 represent the effect sizes, while the horizontal lines show the intervals in 95% confidence of the effect sizes, and the diamond symbol shows the overall effect size. When the forest graph is analyzed, it is seen that the lower and upper limits of the combined effect sizes are generally close to each other, and the study loads are similar. This similarity in terms of study loads indicates the similarity of the contribution of the combined studies to the overall effect size.

Figure  3 clearly represents that the study of Liu and others (Liu et al., 2018 ) has the lowest, and the study of Ercan and Bilen ( 2014 ) has the highest effect sizes. The forest graph shows that all the combined studies and the overall effect are positive. Furthermore, it is simply understood from the forest graph in Fig.  3 and the effect size statistics in Table 3 that the results of the meta-analysis study conducted with 27 studies and analyzing the effect of online education on academic achievement illustrate that this relationship is on average level (= 0.409).

After the analysis of the effect size in the study, whether the studies included in the analysis are distributed heterogeneously or not has also been analyzed. The heterogeneity of the combined studies was determined through the Q and I 2 tests. As a result of the heterogeneity test, Q statistical value was calculated as 29.576. With 26 degrees of freedom at 95% significance level in the chi-square table, the critical value is accepted as 38.885. The Q statistical value (29.576) counted in this study is lower than the critical value of 38.885. The I 2 value, which is the complementary of the Q statistics, is 12.100%. This value indicates that the accurate heterogeneity or the total variability that can be attributed to variability between the studies is 12%. Besides, p value is higher than (0.285) p = 0.05. All these values [Q (26) = 29.579, p = 0.285; I2 = 12.100] indicate that there is a homogeneous distribution between the effect sizes, and fixed effects model should be used to interpret these effect sizes. However, some researchers argue that even if the heterogeneity is low, it should be evaluated based on the random effects model (Borenstein et al., 2007 ). Therefore, this study gives information about both models. The heterogeneity of the combined studies has been attempted to be explained with the characteristics of the studies included in the analysis. In this context, the final purpose of the study is to determine the effect of the country, academic level, and year variables on the findings. Accordingly, the statistics regarding the comparison of the stated relations according to the countries where the studies were conducted are given in Table 4 .

As seen in Table 4 , the effect of online education on academic achievement does not differ significantly according to the countries where the studies were conducted in. Q test results indicate the heterogeneity of the relationships between the variables in terms of countries where the studies were conducted in. According to the table, the effect of online education on academic achievement was reported as the highest in other countries, and the lowest in the US. The statistics regarding the comparison of the stated relations according to the class levels are given in Table 5 .

As seen in Table 5 , the effect of online education on academic achievement does not differ according to the class level. However, the effect of online education on academic achievement is the highest in the 4 th class. The statistics regarding the comparison of the stated relations according to the class levels are given in Table 6 .

As seen in Table 6 , the effect of online education on academic achievement does not differ according to the school subjects included in the studies. However, the effect of online education on academic achievement is the highest in ICT subject.

The obtained effect size in the study was formed as a result of the findings attained from primary studies conducted in 7 different countries. In addition, these studies are the ones on different approaches to online education (online learning environments, social networks, blended learning, etc.). In this respect, the results may raise some questions about the validity and generalizability of the results of the study. However, the moderator analyzes, whether for the country variable or for the approaches covered by online education, did not create significant differences in terms of the effect sizes. If significant differences were to occur in terms of effect sizes, we could say that the comparisons we will make by comparing countries under the umbrella of online education would raise doubts in terms of generalizability. Moreover, no study has been found in the literature that is not based on a special approach or does not contain a specific technique conducted under the name of online education alone. For instance, one of the commonly used definitions is blended education which is defined as an educational model in which online education is combined with traditional education method (Colis & Moonen, 2001 ). Similarly, Rasmussen ( 2003 ) defines blended learning as “a distance education method that combines technology (high technology such as television, internet, or low technology such as voice e-mail, conferences) with traditional education and training.” Further, Kerres and Witt (2003) define blended learning as “combining face-to-face learning with technology-assisted learning.” As it is clearly observed, online education, which has a wider scope, includes many approaches.

As seen in Table 7 , the effect of online education on academic achievement does not differ according to online education approaches included in the studies. However, the effect of online education on academic achievement is the highest in Web Based Problem Solving Approach.

4 Conclusions and discussion

Considering the developments during the pandemics, it is thought that the diversity in online education applications as an interdisciplinary pragmatist field will increase, and the learning content and processes will be enriched with the integration of new technologies into online education processes. Another prediction is that more flexible and accessible learning opportunities will be created in online education processes, and in this way, lifelong learning processes will be strengthened. As a result, it is predicted that in the near future, online education and even digital learning with a newer name will turn into the main ground of education instead of being an alternative or having a support function in face-to-face learning. The lessons learned from the early period online learning experience, which was passed with rapid adaptation due to the Covid19 epidemic, will serve to develop this method all over the world, and in the near future, online learning will become the main learning structure through increasing its functionality with the contribution of new technologies and systems. If we look at it from this point of view, there is a necessity to strengthen online education.

In this study, the effect of online learning on academic achievement is at a moderate level. To increase this effect, the implementation of online learning requires support from teachers to prepare learning materials, to design learning appropriately, and to utilize various digital-based media such as websites, software technology and various other tools to support the effectiveness of online learning (Rolisca & Achadiyah, 2014 ). According to research conducted by Rahayu et al. ( 2017 ), it has been proven that the use of various types of software increases the effectiveness and quality of online learning. Implementation of online learning can affect students' ability to adapt to technological developments in that it makes students use various learning resources on the internet to access various types of information, and enables them to get used to performing inquiry learning and active learning (Hart et al., 2019 ; Prestiadi et al., 2019 ). In addition, there may be many reasons for the low level of effect in this study. The moderator variables examined in this study could be a guide in increasing the level of practical effect. However, the effect size did not differ significantly for all moderator variables. Different moderator analyzes can be evaluated in order to increase the level of impact of online education on academic success. If confounding variables that significantly change the effect level are detected, it can be spoken more precisely in order to increase this level. In addition to the technical and financial problems, the level of impact will increase if a few other difficulties are eliminated such as students, lack of interaction with the instructor, response time, and lack of traditional classroom socialization.

In addition, COVID-19 pandemic related social distancing has posed extreme difficulties for all stakeholders to get online as they have to work in time constraints and resource constraints. Adopting the online learning environment is not just a technical issue, it is a pedagogical and instructive challenge as well. Therefore, extensive preparation of teaching materials, curriculum, and assessment is vital in online education. Technology is the delivery tool and requires close cross-collaboration between teaching, content and technology teams (CoSN, 2020 ).

Online education applications have been used for many years. However, it has come to the fore more during the pandemic process. This result of necessity has brought with it the discussion of using online education instead of traditional education methods in the future. However, with this research, it has been revealed that online education applications are moderately effective. The use of online education instead of face-to-face education applications can only be possible with an increase in the level of success. This may have been possible with the experience and knowledge gained during the pandemic process. Therefore, the meta-analysis of experimental studies conducted in the coming years will guide us. In this context, experimental studies using online education applications should be analyzed well. It would be useful to identify variables that can change the level of impacts with different moderators. Moderator analyzes are valuable in meta-analysis studies (for example, the role of moderators in Karl Pearson's typhoid vaccine studies). In this context, each analysis study sheds light on future studies. In meta-analyses to be made about online education, it would be beneficial to go beyond the moderators determined in this study. Thus, the contribution of similar studies to the field will increase more.

The purpose of this study is to determine the effect of online education on academic achievement. In line with this purpose, the studies that analyze the effect of online education approaches on academic achievement have been included in the meta-analysis. The total sample size of the studies included in the meta-analysis is 1772. While the studies included in the meta-analysis were conducted in the US, Taiwan, Turkey, China, Philippines, Ireland, and Georgia, the studies carried out in Europe could not be reached. The reason may be attributed to that there may be more use of quantitative research methods from a positivist perspective in the countries with an American academic tradition. As a result of the study, it was found out that the effect size of online education on academic achievement (g = 0.409) was moderate. In the studies included in the present research, we found that online education approaches were more effective than traditional ones. However, contrary to the present study, the analysis of comparisons between online and traditional education in some studies shows that face-to-face traditional learning is still considered effective compared to online learning (Ahmad et al., 2016 ; Hamdani & Priatna, 2020 ; Wei & Chou, 2020 ). Online education has advantages and disadvantages. The advantages of online learning compared to face-to-face learning in the classroom is the flexibility of learning time in online learning, the learning time does not include a single program, and it can be shaped according to circumstances (Lai et al., 2019 ). The next advantage is the ease of collecting assignments for students, as these can be done without having to talk to the teacher. Despite this, online education has several weaknesses, such as students having difficulty in understanding the material, teachers' inability to control students, and students’ still having difficulty interacting with teachers in case of internet network cuts (Swan, 2007 ). According to Astuti et al ( 2019 ), face-to-face education method is still considered better by students than e-learning because it is easier to understand the material and easier to interact with teachers. The results of the study illustrated that the effect size (g = 0.409) of online education on academic achievement is of medium level. Therefore, the results of the moderator analysis showed that the effect of online education on academic achievement does not differ in terms of country, lecture, class level, and online education approaches variables. After analyzing the literature, several meta-analyses on online education were published (Bernard et al., 2004 ; Machtmes & Asher, 2000 ; Zhao et al., 2005 ). Typically, these meta-analyzes also include the studies of older generation technologies such as audio, video, or satellite transmission. One of the most comprehensive studies on online education was conducted by Bernard et al. ( 2004 ). In this study, 699 independent effect sizes of 232 studies published from 1985 to 2001 were analyzed, and face-to-face education was compared to online education, with respect to success criteria and attitudes of various learners from young children to adults. In this meta-analysis, an overall effect size close to zero was found for the students' achievement (g +  = 0.01).

In another meta-analysis study carried out by Zhao et al. ( 2005 ), 98 effect sizes were examined, including 51 studies on online education conducted between 1996 and 2002. According to the study of Bernard et al. ( 2004 ), this meta-analysis focuses on the activities done in online education lectures. As a result of the research, an overall effect size close to zero was found for online education utilizing more than one generation technology for students at different levels. However, the salient point of the meta-analysis study of Zhao et al. is that it takes the average of different types of results used in a study to calculate an overall effect size. This practice is problematic because the factors that develop one type of learner outcome (e.g. learner rehabilitation), particularly course characteristics and practices, may be quite different from those that develop another type of outcome (e.g. learner's achievement), and it may even cause damage to the latter outcome. While mixing the studies with different types of results, this implementation may obscure the relationship between practices and learning.

Some meta-analytical studies have focused on the effectiveness of the new generation distance learning courses accessed through the internet for specific student populations. For instance, Sitzmann and others (Sitzmann et al., 2006 ) reviewed 96 studies published from 1996 to 2005, comparing web-based education of job-related knowledge or skills with face-to-face one. The researchers found that web-based education in general was slightly more effective than face-to-face education, but it is insufficient in terms of applicability ("knowing how to apply"). In addition, Sitzmann et al. ( 2006 ) revealed that Internet-based education has a positive effect on theoretical knowledge in quasi-experimental studies; however, it positively affects face-to-face education in experimental studies performed by random assignment. This moderator analysis emphasizes the need to pay attention to the factors of designs of the studies included in the meta-analysis. The designs of the studies included in this meta-analysis study were ignored. This can be presented as a suggestion to the new studies that will be conducted.

Another meta-analysis study was conducted by Cavanaugh et al. ( 2004 ), in which they focused on online education. In this study on internet-based distance education programs for students under 12 years of age, the researchers combined 116 results from 14 studies published between 1999 and 2004 to calculate an overall effect that was not statistically different from zero. The moderator analysis carried out in this study showed that there was no significant factor affecting the students' success. This meta-analysis used multiple results of the same study, ignoring the fact that different results of the same student would not be independent from each other.

In conclusion, some meta-analytical studies analyzed the consequences of online education for a wide range of students (Bernard et al., 2004 ; Zhao et al., 2005 ), and the effect sizes were generally low in these studies. Furthermore, none of the large-scale meta-analyzes considered the moderators, database quality standards or class levels in the selection of the studies, while some of them just referred to the country and lecture moderators. Advances in internet-based learning tools, the pandemic process, and increasing popularity in different learning contexts have required a precise meta-analysis of students' learning outcomes through online learning. Previous meta-analysis studies were typically based on the studies, involving narrow range of confounding variables. In the present study, common but significant moderators such as class level and lectures during the pandemic process were discussed. For instance, the problems have been experienced especially in terms of eligibility of class levels in online education platforms during the pandemic process. It was found that there is a need to study and make suggestions on whether online education can meet the needs of teachers and students.

Besides, the main forms of online education in the past were to watch the open lectures of famous universities and educational videos of institutions. In addition, online education is mainly a classroom-based teaching implemented by teachers in their own schools during the pandemic period, which is an extension of the original school education. This meta-analysis study will stand as a source to compare the effect size of the online education forms of the past decade with what is done today, and what will be done in the future.

Lastly, the heterogeneity test results of the meta-analysis study display that the effect size does not differ in terms of class level, country, online education approaches, and lecture moderators.

*Studies included in meta-analysis

Ahmad, S., Sumardi, K., & Purnawan, P. (2016). Komparasi Peningkatan Hasil Belajar Antara Pembelajaran Menggunakan Sistem Pembelajaran Online Terpadu Dengan Pembelajaran Klasikal Pada Mata Kuliah Pneumatik Dan Hidrolik. Journal of Mechanical Engineering Education, 2 (2), 286–292.

Article   Google Scholar  

Ally, M. (2004). Foundations of educational theory for online learning. Theory and Practice of Online Learning, 2 , 15–44. Retrieved on the 11th of September, 2020 from https://eddl.tru.ca/wp-content/uploads/2018/12/01_Anderson_2008-Theory_and_Practice_of_Online_Learning.pdf

Arat, T., & Bakan, Ö. (2011). Uzaktan eğitim ve uygulamaları. Selçuk Üniversitesi Sosyal Bilimler Meslek Yüksek Okulu Dergisi , 14 (1–2), 363–374. https://doi.org/10.29249/selcuksbmyd.540741

Astuti, C. C., Sari, H. M. K., & Azizah, N. L. (2019). Perbandingan Efektifitas Proses Pembelajaran Menggunakan Metode E-Learning dan Konvensional. Proceedings of the ICECRS, 2 (1), 35–40.

*Atici, B., & Polat, O. C. (2010). Influence of the online learning environments and tools on the student achievement and opinions. Educational Research and Reviews, 5 (8), 455–464. Retrieved on the 11th of October, 2020 from https://academicjournals.org/journal/ERR/article-full-text-pdf/4C8DD044180.pdf

Bernard, R. M., Abrami, P. C., Lou, Y., Borokhovski, E., Wade, A., Wozney, L., et al. (2004). How does distance education compare with classroom instruction? A meta- analysis of the empirical literature. Review of Educational Research, 3 (74), 379–439. https://doi.org/10.3102/00346543074003379

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis . Wiley.

Book   Google Scholar  

Borenstein, M., Hedges, L., & Rothstein, H. (2007). Meta-analysis: Fixed effect vs. random effects . UK: Wiley.

Card, N. A. (2011). Applied meta-analysis for social science research: Methodology in the social sciences . Guilford.

Google Scholar  

*Carreon, J. R. (2018 ). Facebook as integrated blended learning tool in technology and livelihood education exploratory. Retrieved on the 1st of October, 2020 from https://files.eric.ed.gov/fulltext/EJ1197714.pdf

Cavanaugh, C., Gillan, K. J., Kromrey, J., Hess, M., & Blomeyer, R. (2004). The effects of distance education on K-12 student outcomes: A meta-analysis. Learning Point Associates/North Central Regional Educational Laboratory (NCREL) . Retrieved on the 11th of September, 2020 from https://files.eric.ed.gov/fulltext/ED489533.pdf

*Ceylan, V. K., & Elitok Kesici, A. (2017). Effect of blended learning to academic achievement. Journal of Human Sciences, 14 (1), 308. https://doi.org/10.14687/jhs.v14i1.4141

*Chae, S. E., & Shin, J. H. (2016). Tutoring styles that encourage learner satisfaction, academic engagement, and achievement in an online environment. Interactive Learning Environments, 24(6), 1371–1385. https://doi.org/10.1080/10494820.2015.1009472

*Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology and Society, 17 (4), 352–365. Retrieved on the 11th of September, 2020 from https://www.researchgate.net/profile/Gwo_Jen_Hwang/publication/287529242_An_Augmented_Reality-based_Mobile_Learning_System_to_Improve_Students'_Learning_Achievements_and_Motivations_in_Natural_Science_Inquiry_Activities/links/57198c4808ae30c3f9f2c4ac.pdf

Chiao, H. M., Chen, Y. L., & Huang, W. H. (2018). Examining the usability of an online virtual tour-guiding platform for cultural tourism education. Journal of Hospitality, Leisure, Sport & Tourism Education, 23 (29–38), 1. https://doi.org/10.1016/j.jhlste.2018.05.002

Chizmar, J. F., & Walbert, M. S. (1999). Web-based learning environments guided by principles of good teaching practice. Journal of Economic Education, 30 (3), 248–264. https://doi.org/10.2307/1183061

Cleophas, T. J., & Zwinderman, A. H. (2017). Modern meta-analysis: Review and update of methodologies . Switzerland: Springer. https://doi.org/10.1007/978-3-319-55895-0

Cohen, L., Manion, L., & Morrison, K. (2007). Observation.  Research Methods in Education, 6 , 396–412. Retrieved on the 11th of September, 2020 from https://www.researchgate.net/profile/Nabil_Ashraf2/post/How_to_get_surface_potential_Vs_Voltage_curve_from_CV_and_GV_measurements_of_MOS_capacitor/attachment/5ac6033cb53d2f63c3c405b4/AS%3A612011817844736%401522926396219/download/Very+important_C-V+characterization+Lehigh+University+thesis.pdf

Colis, B., & Moonen, J. (2001). Flexible Learning in a Digital World: Experiences and Expectations. Open & Distance Learning Series . Stylus Publishing.

CoSN. (2020). COVID-19 Response: Preparing to Take School Online. CoSN. (2020). COVID-19 Response: Preparing to Take School Online. Retrieved on the 3rd of September, 2021 from https://www.cosn.org/sites/default/files/COVID-19%20Member%20Exclusive_0.pdf

Cumming, G. (2012). Understanding new statistics: Effect sizes, confidence intervals, and meta-analysis. New York, USA: Routledge. https://doi.org/10.4324/9780203807002

Deeks, J. J., Higgins, J. P. T., & Altman, D. G. (2008). Analysing data and undertaking meta-analyses . In J. P. T. Higgins & S. Green (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 243–296). Sussex: John Wiley & Sons. https://doi.org/10.1002/9780470712184.ch9

Demiralay, R., Bayır, E. A., & Gelibolu, M. F. (2016). Öğrencilerin bireysel yenilikçilik özellikleri ile çevrimiçi öğrenmeye hazır bulunuşlukları ilişkisinin incelenmesi. Eğitim ve Öğretim Araştırmaları Dergisi, 5 (1), 161–168. https://doi.org/10.23891/efdyyu.2017.10

Dinçer, S. (2014). Eğitim bilimlerinde uygulamalı meta-analiz. Pegem Atıf İndeksi, 2014(1), 1–133. https://doi.org/10.14527/pegem.001

*Durak, G., Cankaya, S., Yunkul, E., & Ozturk, G. (2017). The effects of a social learning network on students’ performances and attitudes. European Journal of Education Studies, 3 (3), 312–333. 10.5281/zenodo.292951

*Ercan, O. (2014). Effect of web assisted education supported by six thinking hats on students’ academic achievement in science and technology classes . European Journal of Educational Research, 3 (1), 9–23. https://doi.org/10.12973/eu-jer.3.1.9

Ercan, O., & Bilen, K. (2014). Effect of web assisted education supported by six thinking hats on students’ academic achievement in science and technology classes. European Journal of Educational Research, 3 (1), 9–23.

*Ercan, O., Bilen, K., & Ural, E. (2016). “Earth, sun and moon”: Computer assisted instruction in secondary school science - Achievement and attitudes. Issues in Educational Research, 26 (2), 206–224. https://doi.org/10.12973/eu-jer.3.1.9

Field, A. P. (2003). The problems in using fixed-effects models of meta-analysis on real-world data. Understanding Statistics, 2 (2), 105–124. https://doi.org/10.1207/s15328031us0202_02

Field, A. P., & Gillett, R. (2010). How to do a meta-analysis. British Journal of Mathematical and Statistical Psychology, 63 (3), 665–694. https://doi.org/10.1348/00071010x502733

Geostat. (2019). ‘Share of households with internet access’, National statistics office of Georgia . Retrieved on the 2nd September 2020 from https://www.geostat.ge/en/modules/categories/106/information-and-communication-technologies-usage-in-households

*Gwo-Jen, H., Nien-Ting, T., & Xiao-Ming, W. (2018). Creating interactive e-books through learning by design: The impacts of guided peer-feedback on students’ learning achievements and project outcomes in science courses. Journal of Educational Technology & Society., 21 (1), 25–36. Retrieved on the 2nd of October, 2020 https://ae-uploads.uoregon.edu/ISTE/ISTE2019/PROGRAM_SESSION_MODEL/HANDOUTS/112172923/CreatingInteractiveeBooksthroughLearningbyDesignArticle2018.pdf

Hamdani, A. R., & Priatna, A. (2020). Efektifitas implementasi pembelajaran daring (full online) dimasa pandemi Covid-19 pada jenjang Sekolah Dasar di Kabupaten Subang. Didaktik: Jurnal Ilmiah PGSD STKIP Subang, 6 (1), 1–9.

Hart, C. M., Berger, D., Jacob, B., Loeb, S., & Hill, M. (2019). Online learning, offline outcomes: Online course taking and high school student performance. Aera Open, 5(1).

*Hayes, J., & Stewart, I. (2016). Comparing the effects of derived relational training and computer coding on intellectual potential in school-age children. The British Journal of Educational Psychology, 86 (3), 397–411. https://doi.org/10.1111/bjep.12114

Horton, W. K. (2000). Designing web-based training: How to teach anyone anything anywhere anytime (Vol. 1). Wiley Publishing.

*Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers and Education, 59 (4), 1246–1256. https://doi.org/10.1016/j.compedu.2012.05.009

*Kert, S. B., Köşkeroğlu Büyükimdat, M., Uzun, A., & Çayiroğlu, B. (2017). Comparing active game-playing scores and academic performances of elementary school students. Education 3–13, 45 (5), 532–542. https://doi.org/10.1080/03004279.2016.1140800

*Lai, A. F., & Chen, D. J. (2010). Web-based two-tier diagnostic test and remedial learning experiment. International Journal of Distance Education Technologies, 8 (1), 31–53. https://doi.org/10.4018/jdet.2010010103

*Lai, A. F., Lai, H. Y., Chuang W. H., & Wu, Z.H. (2015). Developing a mobile learning management system for outdoors nature science activities based on 5e learning cycle. Proceedings of the International Conference on e-Learning, ICEL. Proceedings of the International Association for Development of the Information Society (IADIS) International Conference on e-Learning (Las Palmas de Gran Canaria, Spain, July 21–24, 2015). Retrieved on the 14th November 2020 from https://files.eric.ed.gov/fulltext/ED562095.pdf

Lai, C. H., Lin, H. W., Lin, R. M., & Tho, P. D. (2019). Effect of peer interaction among online learning community on learning engagement and achievement. International Journal of Distance Education Technologies (IJDET), 17 (1), 66–77.

Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis . Oxford University.

*Liu, K. P., Tai, S. J. D., & Liu, C. C. (2018). Enhancing language learning through creation: the effect of digital storytelling on student learning motivation and performance in a school English course. Educational Technology Research and Development, 66 (4), 913–935. https://doi.org/10.1007/s11423-018-9592-z

Machtmes, K., & Asher, J. W. (2000). A meta-analysis of the effectiveness of telecourses in distance education. American Journal of Distance Education, 14 (1), 27–46. https://doi.org/10.1080/08923640009527043

Makowski, D., Piraux, F., & Brun, F. (2019). From experimental network to meta-analysis: Methods and applications with R for agronomic and environmental sciences. Dordrecht: Springer. https://doi.org/10.1007/978-94-024_1696-1

* Meyers, C., Molefe, A., & Brandt, C. (2015). The Impact of the" Enhancing Missouri's Instructional Networked Teaching Strategies"(eMINTS) Program on Student Achievement, 21st-Century Skills, and Academic Engagement--Second-Year Results . Society for Research on Educational Effectiveness. Retrieved on the 14 th November, 2020 from https://files.eric.ed.gov/fulltext/ED562508.pdf

OECD. (2020). ‘A framework to guide an education response to the COVID-19 Pandemic of 2020 ’. https://doi.org/10.26524/royal.37.6

Pecoraro, V. (2018). Appraising evidence . In G. Biondi-Zoccai (Ed.), Diagnostic meta-analysis: A useful tool for clinical decision-making (pp. 99–114). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78966-8_9

Pigott, T. (2012). Advances in meta-analysis . Springer.

Pillay, H. , Irving, K., & Tones, M. (2007). Validation of the diagnostic tool for assessing Tertiary students’ readiness for online learning. Higher Education Research & Development, 26 (2), 217–234. https://doi.org/10.1080/07294360701310821

Prestiadi, D., Zulkarnain, W., & Sumarsono, R. B. (2019). Visionary leadership in total quality management: efforts to improve the quality of education in the industrial revolution 4.0. In the 4th International Conference on Education and Management (COEMA 2019). Atlantis Press

Poole, D. M. (2000). Student participation in a discussion-oriented online course: a case study. Journal of Research on Computing in Education, 33 (2), 162–177. https://doi.org/10.1080/08886504.2000.10782307

Rahayu, F. S., Budiyanto, D., & Palyama, D. (2017). Analisis penerimaan e-learning menggunakan technology acceptance model (Tam)(Studi Kasus: Universitas Atma Jaya Yogyakarta). Jurnal Terapan Teknologi Informasi, 1 (2), 87–98.

Rasmussen, R. C. (2003). The quantity and quality of human interaction in a synchronous blended learning environment . Brigham Young University Press.

*Ravenel, J., T. Lambeth, D., & Spires, B. (2014). Effects of computer-based programs on mathematical achievement scores for fourth-grade students. i-manager’s Journal on School Educational Technology, 10 (1), 8–21. https://doi.org/10.26634/jsch.10.1.2830

Rolisca, R. U. C., & Achadiyah, B. N. (2014). Pengembangan media evaluasi pembelajaran dalam bentuk online berbasis e-learning menggunakan software wondershare quiz creator dalam mata pelajaran akuntansi SMA Brawijaya Smart School (BSS). Jurnal Pendidikan Akuntansi Indonesia, 12(2).

Sitzmann, T., Kraiger, K., Stewart, D., & Wisher, R. (2006). The comparative effective- ness of Web-based and classroom instruction: A meta-analysis . Personnel Psychology, 59 (3), 623–664. https://doi.org/10.1111/j.1744-6570.2006.00049.x

Stewart, D. W., & Kamins, M. A. (2001). Developing a coding scheme and coding study reports. In M. W. Lipsey & D. B. Wilson (Eds.), Practical meta­analysis: Applied social research methods series (Vol. 49, pp. 73–90). Sage.

Swan, K. (2007). Research on online learning. Journal of Asynchronous Learning Networks, 11 (1), 55–59.

*Sung, H. Y., Hwang, G. J., & Chang, Y. C. (2016). Development of a mobile learning system based on a collaborative problem-posing strategy. Interactive Learning Environments, 24 (3), 456–471. https://doi.org/10.1080/10494820.2013.867889

Tsagris, M., & Fragkos, K. C. (2018). Meta-analyses of clinical trials versus diagnostic test accuracy studies. In G. Biondi-Zoccai (Ed.), Diagnostic meta-analysis: A useful tool for clinical decision-making (pp. 31–42). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-78966-8_4

UNESCO. (2020, Match 13). COVID-19 educational disruption and response. Retrieved on the 14 th November 2020 from https://en.unesco.org/themes/education-emergencies/ coronavirus-school-closures

Usta, E. (2011a). The effect of web-based learning environments on attitudes of students regarding computer and internet. Procedia-Social and Behavioral Sciences, 28 (262–269), 1. https://doi.org/10.1016/j.sbspro.2011.11.051

Usta, E. (2011b). The examination of online self-regulated learning skills in web-based learning environments in terms of different variables. Turkish Online Journal of Educational Technology-TOJET, 10 (3), 278–286. Retrieved on the 14th November 2020 from https://files.eric.ed.gov/fulltext/EJ944994.pdf

Vrasidas, C. & MsIsaac, M. S. (2000). Principles of pedagogy and evaluation for web-based learning. Educational Media International, 37 (2), 105–111. https://doi.org/10.1080/095239800410405

*Wang, C. H., & Chen, C. P. (2013). Effects of facebook tutoring on learning english as a second language. Proceedings of the International Conference e-Learning 2013, (2009), 135–142. Retrieved on the 15th November 2020 from https://files.eric.ed.gov/fulltext/ED562299.pdf

Wei, H. C., & Chou, C. (2020). Online learning performance and satisfaction: Do perceptions and readiness matter? Distance Education, 41 (1), 48–69.

*Yu, F. Y. (2019). The learning potential of online student-constructed tests with citing peer-generated questions. Interactive Learning Environments, 27 (2), 226–241. https://doi.org/10.1080/10494820.2018.1458040

*Yu, F. Y., & Chen, Y. J. (2014). Effects of student-generated questions as the source of online drill-and-practice activities on learning . British Journal of Educational Technology, 45 (2), 316–329. https://doi.org/10.1111/bjet.12036

*Yu, F. Y., & Pan, K. J. (2014). The effects of student question-generation with online prompts on learning. Educational Technology and Society, 17 (3), 267–279. Retrieved on the 15th November 2020 from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.565.643&rep=rep1&type=pdf

*Yu, W. F., She, H. C., & Lee, Y. M. (2010). The effects of web-based/non-web-based problem-solving instruction and high/low achievement on students’ problem-solving ability and biology achievement. Innovations in Education and Teaching International, 47 (2), 187–199. https://doi.org/10.1080/14703291003718927

Zhao, Y., Lei, J., Yan, B, Lai, C., & Tan, S. (2005). A practical analysis of research on the effectiveness of distance education. Teachers College Record, 107 (8). https://doi.org/10.1111/j.1467-9620.2005.00544.x

*Zhong, B., Wang, Q., Chen, J., & Li, Y. (2017). Investigating the period of switching roles in pair programming in a primary school. Educational Technology and Society, 20 (3), 220–233. Retrieved on the 15th November 2020 from https://repository.nie.edu.sg/bitstream/10497/18946/1/ETS-20-3-220.pdf

Download references

Author information

Authors and affiliations.

Primary Education, Ministry of Turkish National Education, Mersin, Turkey

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hakan Ulum .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Ulum, H. The effects of online education on academic success: A meta-analysis study. Educ Inf Technol 27 , 429–450 (2022). https://doi.org/10.1007/s10639-021-10740-8

Download citation

Received : 06 December 2020

Accepted : 30 August 2021

Published : 06 September 2021

Issue Date : January 2022

DOI : https://doi.org/10.1007/s10639-021-10740-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Online education
  • Student achievement
  • Academic success
  • Meta-analysis
  • Find a journal
  • Publish with us
  • Track your research

research paper about online and modular learning

Join Us | Contact Us

OPEN ACCESS JOURNALS

research paper about online and modular learning

The Effectiveness of Modular Distance Learning Modality to the Academic Performance of Students: A Literature Review

Angilene J. Abude

Graduate Student, University of Rizal System, Antipolo Campus, Antipolo, Rizal, Philippines

I NTRODUCTION

The year 2020 has been a remarkable period when the Philippines has on the peak of struggle as the Covid-19 virus continues to find its way to disrupt the economy, health, culture, and education in the country. The increasing number of infected people and the threat of the new strains of the coronavirus has forced the government to still ban the face-to-face classes. As a result, Modular Distance Learning becomes the widely used modality in consideration to the learners in areas where the internet is inaccessible for online learning.

As cited by Ragandang (2020), Our country ranked eleventh slowest in upload speed and sixteenth slowest in download speed among 87 countries; while named 21st or 72.4 percent — leveled from those of Albania, Brazil, and Tunisia, among others — in terms of 4G availability (Mercurio, 2020). By this result, it can be concluded that online distance learning is not applicable to use by students all over the country due to the slow rate of upload and download speed.

In addition to the data gathered via DepEd’s National Learner Enrolment and Survey Forms (LESFs), 8.8 million (39.6% of total respondents) out of the 22.2 million enrollees preferred modular distance learning for the upcoming school year. Meanwhile, 3.9 million enrollees (17.6%) were partial to blended learning (which uses a combination of different modalities), 3.8 million (17.1%) preferred online learning, and 1.4 million and 900,000 enrollees preferred TV-based and radio-based learning, respectively. Due to this concern, the modular Learning modality has been widely used by all public schools in the Philippines.

Modular learning is a form of distance learning that uses Self-Learning Modules (SLM) and is highly convenient for most typical Filipino students. It was also the most preferred learning system of the majority of parents/guardians for their children. The SLM is based on the most essential learning competencies (MELCS) provided by the Department of Education.

In modular distance learning, the teachers take the responsibility of monitoring the progress of the learners. The students may ask assistance from the teacher via email, telephone, and text message/instant messaging. For those students who experience difficulties, the teacher will give remedial activities.

Since education takes place at home, the parents play a vital role as facilitators. Their primary function is modular learning is to establish a connection and guide to their child. (Flip Science, 2020).

According to the Meta-analysis on the effects of Distance Learning on K-12 students’ outcomes (Cavanaugh, Gillan, Kromrey, Hess, Blomeyer, 2004), Distance education is somehow as effective as classroom instruction. In other words, students who undergo online or modular distance learning can have a quality education provided that the basic needs are met.

However, in the study conducted by (Olivo, 2021), parents claimed that time allotment in the completion of learning activities was insufficient since the activities were so many. In addition, some parents said that some topics in the modules are so hard to ven for them and they cannot help and guide their children in answering the learning tasks. The research then recommended a review of the learning activities and conduct seminars for parents to guide them in assisting their children during their “classes “at home.

This article will be emphasized the negative and positive effects of modular distance learning both in international and local areas to assess the effectiveness of MDL with regards to the level of academic performance of students.

D ISCUSSIONS

A module has clearly defined, objectives; preferably in behavioral form (Daries, 1981).

Taneja (1989) defined module as a unit of work in a course of instruction that is virtually self-contained and a method of teaching that is based on the concept of building up skills and knowledge in discrete units. A module is a set of learning opportunities organized around a well-defined topic that contains the elements of instruction, specific objectives, teaching-learning activities, and evaluation using criterion-referenced measures (UNESCO, 1988).

In the study conducted by Ali et al., (2010), entitled “Effectiveness of modular teaching at Secondary level”, it appears that the modular learning groups perform significantly better than the group taught by the traditional method of teaching. The Modularization also promoted positive changes in teaching style. The result of the study was in favor of modular distance learning thus it is recommended to use this approach in conventional classrooms at various levels of education.

Furthermore, (Sadiq and Zamir, 2014), proved that modular teaching is a more effective approach in teaching university students of Master in Educational Planning and Management. This method can be applied widely to other fields and subjects as well as other levels of education because this approach can fulfill the diversified needs of learning of students of all levels.

Moreover, Sadiq (2014) states in her study that modular teaching is more effective on university students in the teaching-learning process as compared to ordinary teaching methods. Because in this modular approach the students learn at their own pace.

In the article by Aksan (2021) entitled “The Effect of Modular Distance Learning Approach to Academic Performance in Mathematics of Students in Mindanao State University- Sulu Senior High School,” it was revealed that the academic grades in Mathematics of the STEM students treated by modular approach achieved very satisfactory in the school year 2019-2020. The study revealed the effectiveness of the modular distance learning approach in learning Math despite its challenges amidst the COVID-19 pandemic.

Likewise, the result of the study of Gonzales (2015) determined that the use of the modular teaching approach was more effective than the traditional method of instruction. In light of the COVID-19 pandemic where no face-to-face classes can take place and with the problems in the use of the internet and technology, modular distance learning is the best option to continue delivering education that could yield good results.

On the contrary, the results of the study of Dargo & Dimas (2021), concluded that the academic performance of learners after the implementation of Modular Distance Learning (MDL) decreased. This only means that face-to-face is more effective and favorable on the part of the learners. It was also determined that there were more negative effects of MDL than positive ones. Based on the respondents used in the study, they cited the reasons how the modular distance learning creates a negative impact on the learning among the students. First, limited interaction between the teacher and the learners. Lastly, too many tasks/ activities incorporated in the modules

To address the limitation of MDL, it was hereby recommended to have constant monitoring of teachers via home visitation to assess the progress of the students as well as those who need special attention, simplification of worksheets and workbooks to be distributed to the learners, and creation of video lesson aligned with Most Essential Learning Competencies (MELC). It was also stated that there should be an open forum among parents, teachers, and other stakeholders to explain the real scenario of the new normal education.

In the article, “The Challenges and Status of Modular Learning: Its Effect to Students’ Academic Behavior and Performance” by Agarin (2021), it was inferred that the teacher’s‟ physical interaction with the learners influence the learners‟ academic performance.

SUMMARY AND CONCLUSION

Noting the results of the studies conducted by the previous researchers, they have determined the effectiveness and shortcomings of modular distance learning (MDL). The following are the sum-up of the causes of the positive impact of MDL on students who experienced the new normal education. First, it fulfills the diversified needs of learning of students of all levels. Second, students learn at their own pace. Lastly, the modularization promoted positive changes in teaching style.

However, some studies have shown the negative impact of modular distance learning which resulted in the decreased rate of academic performance of students. Parents had claimed that time allotment to finish the learning tasks, too many activities incorporated in the modules, less interaction of the teachers and learners, and educational attainment of parents were the reasons for their hard time as facilitators to their children.

Upon learning the strength and weaknesses of MDL, the school administrators, Local Government Unit (LGU), and Department of Education (DepEd) officials should address the needs of students, parents as well as teachers to have efficient and effective delivery of education amidst the health crisis that everyone is experiencing right now.

This literature review article will serve as future resources for another related research. Future researchers may consider the findings and variables used in gathering data. Others may conduct additional studies to elaborate on the effectiveness of MDL in the academic performance of the students.

R EFERENCES

Aksan, J. A. (2021). Effect Of Modular Distance Learning Approach To Academic Performance In Mathematics Of Students In Mindanao State University-Sulu Senior High School Amidst Covid-19 Pandemic.  Open Access Indonesia Journal of Social Sciences ,  4 (4), 386-409. https://doi.org/10.37275/oaijss.v4i2.64

Ali, R., Ghazi, S. R., Khan, M. S., Hussain, S., & Faitma, Z. T. (2010). Effectiveness of modular teaching in biology at secondary level.  Asian Social Science ,  6 (9), 49.

Agarin, M. A. L. (2021). The Challenges and Status of Modular Learning: Its Effect to Students’ Academic Behavior and performance.  EPRA International Journal of Multidisciplinary Research .

Collado, Z. C., Rodriguez, V. R., & Dueñas III, Z. D. (2021). Children’s engagement in self-learning modules (SLMs) amid the pandemic: a predictive analysis on the role of internet access, household food security, and parental involvement to modular classes.  Education 3-13 , 1-14.

Dargo, J. M., & Dimas, M. (2021). Modular Distance Learning: It’s Effect in the Academic Performance of Learners in the New Normal.  JETL (Journal of Education, Teaching and Learning) ,  6 (2), 204-208.

Gumapac, J. R., Aytona, E. M., & Alba, M. G. R. (2021). Parents Involvement in Accomplishing Students Learning Tasks in the New Normal.  International Journal of Research in Engineering, Science and Management ,  4 (7), 367-380.

Natividad, E. (2021). Perceived Effectiveness of Self Learning Modules in the Implementation of Modular Distance Learning in the Elementary Level.  Available at SSRN 3889429 .

Olivo, M. G. (2021). Parents’ Perception on Printed Modular Distance Learning in Canarem Elementary School: Basis for Proposed Action Plan.  International Journal of Multidisciplinary: Applied Business and Education Research ,  2 (4), 296-309. https://doi.org/10.11594/ijmaber.02.04.03

Sadiq, S., & Zamir, S. (2014). Effectiveness of modular approach in teaching at university level.  Journal of Education and Practice ,  5 (17), 103-109.

research paper about online and modular learning

  • Research article
  • Open access
  • Published: 06 February 2017

Blended learning effectiveness: the relationship between student characteristics, design features and outcomes

  • Mugenyi Justice Kintu   ORCID: orcid.org/0000-0002-4500-1168 1 , 2 ,
  • Chang Zhu 2 &
  • Edmond Kagambe 1  

International Journal of Educational Technology in Higher Education volume  14 , Article number:  7 ( 2017 ) Cite this article

740k Accesses

209 Citations

37 Altmetric

Metrics details

This paper investigates the effectiveness of a blended learning environment through analyzing the relationship between student characteristics/background, design features and learning outcomes. It is aimed at determining the significant predictors of blended learning effectiveness taking student characteristics/background and design features as independent variables and learning outcomes as dependent variables. A survey was administered to 238 respondents to gather data on student characteristics/background, design features and learning outcomes. The final semester evaluation results were used as a measure for performance as an outcome. We applied the online self regulatory learning questionnaire for data on learner self regulation, the intrinsic motivation inventory for data on intrinsic motivation and other self-developed instruments for measuring the other constructs. Multiple regression analysis results showed that blended learning design features (technology quality, online tools and face-to-face support) and student characteristics (attitudes and self-regulation) predicted student satisfaction as an outcome. The results indicate that some of the student characteristics/backgrounds and design features are significant predictors for student learning outcomes in blended learning.

Introduction

The teaching and learning environment is embracing a number of innovations and some of these involve the use of technology through blended learning. This innovative pedagogical approach has been embraced rapidly though it goes through a process. The introduction of blended learning (combination of face-to-face and online teaching and learning) initiatives is part of these innovations but its uptake, especially in the developing world faces challenges for it to be an effective innovation in teaching and learning. Blended learning effectiveness has quite a number of underlying factors that pose challenges. One big challenge is about how users can successfully use the technology and ensuring participants’ commitment given the individual learner characteristics and encounters with technology (Hofmann, 2014 ). Hofmann adds that users getting into difficulties with technology may result into abandoning the learning and eventual failure of technological applications. In a report by Oxford Group ( 2013 ), some learners (16%) had negative attitudes to blended learning while 26% were concerned that learners would not complete study in blended learning. Learners are important partners in any learning process and therefore, their backgrounds and characteristics affect their ability to effectively carry on with learning and being in blended learning, the design tools to be used may impinge on the effectiveness in their learning.

This study tackles blended learning effectiveness which has been investigated in previous studies considering grades, course completion, retention and graduation rates but no studies regarding effectiveness in view of learner characteristics/background, design features and outcomes have been done in the Ugandan university context. No studies have also been done on how the characteristics of learners and design features are predictors of outcomes in the context of a planning evaluation research (Guskey, 2000 ) to establish the effectiveness of blended learning. Guskey ( 2000 ) noted that planning evaluation fits in well since it occurs before the implementation of any innovation as well as allowing planners to determine the needs, considering participant characteristics, analyzing contextual matters and gathering baseline information. This study is done in the context of a plan to undertake innovative pedagogy involving use of a learning management system (moodle) for the first time in teaching and learning in a Ugandan university. The learner characteristics/backgrounds being investigated for blended learning effectiveness include self-regulation, computer competence, workload management, social and family support, attitude to blended learning, gender and age. We investigate the blended learning design features of learner interactions, face-to-face support, learning management system tools and technology quality while the outcomes considered include satisfaction, performance, intrinsic motivation and knowledge construction. Establishing the significant predictors of outcomes in blended learning will help to inform planners of such learning environments in order to put in place necessary groundwork preparations for designing blended learning as an innovative pedagogical approach.

Kenney and Newcombe ( 2011 ) did their comparison to establish effectiveness in view of grades and found that blended learning had higher average score than the non-blended learning environment. Garrison and Kanuka ( 2004 ) examined the transformative potential of blended learning and reported an increase in course completion rates, improved retention and increased student satisfaction. Comparisons between blended learning environments have been done to establish the disparity between academic achievement, grade dispersions and gender performance differences and no significant differences were found between the groups (Demirkol & Kazu, 2014 ).

However, blended learning effectiveness may be dependent on many other factors and among them student characteristics, design features and learning outcomes. Research shows that the failure of learners to continue their online education in some cases has been due to family support or increased workload leading to learner dropout (Park & Choi, 2009 ) as well as little time for study. Additionally, it is dependent on learner interactions with instructors since failure to continue with online learning is attributed to this. In Greer, Hudson & Paugh’s study as cited in Park and Choi ( 2009 ), family and peer support for learners is important for success in online and face-to-face learning. Support is needed for learners from all areas in web-based courses and this may be from family, friends, co-workers as well as peers in class. Greer, Hudson and Paugh further noted that peer encouragement assisted new learners in computer use and applications. The authors also show that learners need time budgeting, appropriate technology tools and support from friends and family in web-based courses. Peer support is required by learners who have no or little knowledge of technology, especially computers, to help them overcome fears. Park and Choi, ( 2009 ) showed that organizational support significantly predicts learners’ stay and success in online courses because employers at times are willing to reduce learners’ workload during study as well as supervisors showing that they are interested in job-related learning for employees to advance and improve their skills.

The study by Kintu and Zhu ( 2016 ) investigated the possibility of blended learning in a Ugandan University and examined whether student characteristics (such as self-regulation, attitudes towards blended learning, computer competence) and student background (such as family support, social support and management of workload) were significant factors in learner outcomes (such as motivation, satisfaction, knowledge construction and performance). The characteristics and background factors were studied along with blended learning design features such as technology quality, learner interactions, and Moodle with its tools and resources. The findings from that study indicated that learner attitudes towards blended learning were significant factors to learner satisfaction and motivation while workload management was a significant factor to learner satisfaction and knowledge construction. Among the blended learning design features, only learner interaction was a significant factor to learner satisfaction and knowledge construction.

The focus of the present study is on examining the effectiveness of blended learning taking into consideration learner characteristics/background, blended learning design elements and learning outcomes and how the former are significant predictors of blended learning effectiveness.

Studies like that of Morris and Lim ( 2009 ) have investigated learner and instructional factors influencing learning outcomes in blended learning. They however do not deal with such variables in the contexts of blended learning design as an aspect of innovative pedagogy involving the use of technology in education. Apart from the learner variables such as gender, age, experience, study time as tackled before, this study considers social and background aspects of the learners such as family and social support, self-regulation, attitudes towards blended learning and management of workload to find out their relationship to blended learning effectiveness. Identifying the various types of learner variables with regard to their relationship to blended learning effectiveness is important in this study as we embark on innovative pedagogy with technology in teaching and learning.

Literature review

This review presents research about blended learning effectiveness from the perspective of learner characteristics/background, design features and learning outcomes. It also gives the factors that are considered to be significant for blended learning effectiveness. The selected elements are as a result of the researcher’s experiences at a Ugandan university where student learning faces challenges with regard to learner characteristics and blended learning features in adopting the use of technology in teaching and learning. We have made use of Loukis, Georgiou, and Pazalo ( 2007 ) value flow model for evaluating an e-learning and blended learning service specifically considering the effectiveness evaluation layer. This evaluates the extent of an e-learning system usage and the educational effectiveness. In addition, studies by Leidner, Jarvenpaa, Dillon and Gunawardena as cited in Selim ( 2007 ) have noted three main factors that affect e-learning and blended learning effectiveness as instructor characteristics, technology and student characteristics. Heinich, Molenda, Russell, and Smaldino ( 2001 ) showed the need for examining learner characteristics for effective instructional technology use and showed that user characteristics do impact on behavioral intention to use technology. Research has dealt with learner characteristics that contribute to learner performance outcomes. They have dealt with emotional intelligence, resilience, personality type and success in an online learning context (Berenson, Boyles, & Weaver, 2008 ). Dealing with the characteristics identified in this study will give another dimension, especially for blended learning in learning environment designs and add to specific debate on learning using technology. Lin and Vassar, ( 2009 ) indicated that learner success is dependent on ability to cope with technical difficulty as well as technical skills in computer operations and internet navigation. This justifies our approach in dealing with the design features of blended learning in this study.

Learner characteristics/background and blended learning effectiveness

Studies indicate that student characteristics such as gender play significant roles in academic achievement (Oxford Group, 2013 ), but no study examines performance of male and female as an important factor in blended learning effectiveness. It has again been noted that the success of e- and blended learning is highly dependent on experience in internet and computer applications (Picciano & Seaman, 2007 ). Rigorous discovery of such competences can finally lead to a confirmation of high possibilities of establishing blended learning. Research agrees that the success of e-learning and blended learning can largely depend on students as well as teachers gaining confidence and capability to participate in blended learning (Hadad, 2007 ). Shraim and Khlaif ( 2010 ) note in their research that 75% of students and 72% of teachers were lacking in skills to utilize ICT based learning components due to insufficient skills and experience in computer and internet applications and this may lead to failure in e-learning and blended learning. It is therefore pertinent that since the use of blended learning applies high usage of computers, computer competence is necessary (Abubakar & Adetimirin, 2015 ) to avoid failure in applying technology in education for learning effectiveness. Rovai, ( 2003 ) noted that learners’ computer literacy and time management are crucial in distance learning contexts and concluded that such factors are meaningful in online classes. This is supported by Selim ( 2007 ) that learners need to posses time management skills and computer skills necessary for effectiveness in e- learning and blended learning. Self-regulatory skills of time management lead to better performance and learners’ ability to structure the physical learning environment leads to efficiency in e-learning and blended learning environments. Learners need to seek helpful assistance from peers and teachers through chats, email and face-to-face meetings for effectiveness (Lynch & Dembo, 2004 ). Factors such as learners’ hours of employment and family responsibilities are known to impede learners’ process of learning, blended learning inclusive (Cohen, Stage, Hammack, & Marcus, 2012 ). It was also noted that a common factor in failure and learner drop-out is the time conflict which is compounded by issues of family , employment status as well as management support (Packham, Jones, Miller, & Thomas, 2004 ). A study by Thompson ( 2004 ) shows that work, family, insufficient time and study load made learners withdraw from online courses.

Learner attitudes to blended learning can result in its effectiveness and these shape behavioral intentions which usually lead to persistence in a learning environment, blended inclusive. Selim, ( 2007 ) noted that the learners’ attitude towards e-learning and blended learning are success factors for these learning environments. Learner performance by age and gender in e-learning and blended learning has been found to indicate no significant differences between male and female learners and different age groups (i.e. young, middle-aged and old above 45 years) (Coldwell, Craig, Paterson, & Mustard, 2008 ). This implies that the potential for blended learning to be effective exists and is unhampered by gender or age differences.

Blended learning design features

The design features under study here include interactions, technology with its quality, face-to-face support and learning management system tools and resources.

Research shows that absence of learner interaction causes failure and eventual drop-out in online courses (Willging & Johnson, 2009 ) and the lack of learner connectedness was noted as an internal factor leading to learner drop-out in online courses (Zielinski, 2000 ). It was also noted that learners may not continue in e- and blended learning if they are unable to make friends thereby being disconnected and developing feelings of isolation during their blended learning experiences (Willging & Johnson, 2009). Learners’ Interactions with teachers and peers can make blended learning effective as its absence makes learners withdraw (Astleitner, 2000 ). Loukis, Georgious and Pazalo (2007) noted that learners’ measuring of a system’s quality, reliability and ease of use leads to learning efficiency and can be so in blended learning. Learner success in blended learning may substantially be affected by system functionality (Pituch & Lee, 2006 ) and may lead to failure of such learning initiatives (Shrain, 2012 ). It is therefore important to examine technology quality for ensuring learning effectiveness in blended learning. Tselios, Daskalakis, and Papadopoulou ( 2011 ) investigated learner perceptions after a learning management system use and found out that the actual system use determines the usefulness among users. It is again noted that a system with poor response time cannot be taken to be useful for e-learning and blended learning especially in cases of limited bandwidth (Anderson, 2004 ). In this study, we investigate the use of Moodle and its tools as a function of potential effectiveness of blended learning.

The quality of learning management system content for learners can be a predictor of good performance in e-and blended learning environments and can lead to learner satisfaction. On the whole, poor quality technology yields no satisfaction by users and therefore the quality of technology significantly affects satisfaction (Piccoli, Ahmad, & Ives, 2001 ). Continued navigation through a learning management system increases use and is an indicator of success in blended learning (Delone & McLean, 2003 ). The efficient use of learning management system and its tools improves learning outcomes in e-learning and blended learning environments.

It is noted that learner satisfaction with a learning management system can be an antecedent factor for blended learning effectiveness. Goyal and Tambe ( 2015 ) noted that learners showed an appreciation to Moodle’s contribution in their learning. They showed positivity with it as it improved their understanding of course material (Ahmad & Al-Khanjari, 2011 ). The study by Goyal and Tambe ( 2015 ) used descriptive statistics to indicate improved learning by use of uploaded syllabus and session plans on Moodle. Improved learning is also noted through sharing study material, submitting assignments and using the calendar. Learners in the study found Moodle to be an effective educational tool.

In blended learning set ups, face-to-face experiences form part of the blend and learner positive attitudes to such sessions could mean blended learning effectiveness. A study by Marriot, Marriot, and Selwyn ( 2004 ) showed learners expressing their preference for face-to-face due to its facilitation of social interaction and communication skills acquired from classroom environment. Their preference for the online session was only in as far as it complemented the traditional face-to-face learning. Learners in a study by Osgerby ( 2013 ) had positive perceptions of blended learning but preferred face-to-face with its step-by-stem instruction. Beard, Harper and Riley ( 2004 ) shows that some learners are successful while in a personal interaction with teachers and peers thus prefer face-to-face in the blend. Beard however dealt with a comparison between online and on-campus learning while our study combines both, singling out the face-to-face part of the blend. The advantage found by Beard is all the same relevant here because learners in blended learning express attitude to both online and face-to-face for an effective blend. Researchers indicate that teacher presence in face-to-face sessions lessens psychological distance between them and the learners and leads to greater learning. This is because there are verbal aspects like giving praise, soliciting for viewpoints, humor, etc and non-verbal expressions like eye contact, facial expressions, gestures, etc which make teachers to be closer to learners psychologically (Kelley & Gorham, 2009 ).

Learner outcomes

The outcomes under scrutiny in this study include performance, motivation, satisfaction and knowledge construction. Motivation is seen here as an outcome because, much as cognitive factors such as course grades are used in measuring learning outcomes, affective factors like intrinsic motivation may also be used to indicate outcomes of learning (Kuo, Walker, Belland, & Schroder, 2013 ). Research shows that high motivation among online learners leads to persistence in their courses (Menager-Beeley, 2004 ). Sankaran and Bui ( 2001 ) indicated that less motivated learners performed poorly in knowledge tests while those with high learning motivation demonstrate high performance in academics (Green, Nelson, Martin, & Marsh, 2006 ). Lim and Kim, ( 2003 ) indicated that learner interest as a motivation factor promotes learner involvement in learning and this could lead to learning effectiveness in blended learning.

Learner satisfaction was noted as a strong factor for effectiveness of blended and online courses (Wilging & Johnson, 2009) and dissatisfaction may result from learners’ incompetence in the use of the learning management system as an effective learning tool since, as Islam ( 2014 ) puts it, users may be dissatisfied with an information system due to ease of use. A lack of prompt feedback for learners from course instructors was found to cause dissatisfaction in an online graduate course. In addition, dissatisfaction resulted from technical difficulties as well as ambiguous course instruction Hara and Kling ( 2001 ). These factors, once addressed, can lead to learner satisfaction in e-learning and blended learning and eventual effectiveness. A study by Blocker and Tucker ( 2001 ) also showed that learners had difficulties with technology and inadequate group participation by peers leading to dissatisfaction within these design features. Student-teacher interactions are known to bring satisfaction within online courses. Study results by Swan ( 2001 ) indicated that student-teacher interaction strongly related with student satisfaction and high learner-learner interaction resulted in higher levels of course satisfaction. Descriptive results by Naaj, Nachouki, and Ankit ( 2012 ) showed that learners were satisfied with technology which was a video-conferencing component of blended learning with a mean of 3.7. The same study indicated student satisfaction with instructors at a mean of 3.8. Askar and Altun, ( 2008 ) found that learners were satisfied with face-to-face sessions of the blend with t-tests and ANOVA results indicating female scores as higher than for males in the satisfaction with face-to-face environment of the blended learning.

Studies comparing blended learning with traditional face-to-face have indicated that learners perform equally well in blended learning and their performance is unaffected by the delivery method (Kwak, Menezes, & Sherwood, 2013 ). In another study, learning experience and performance are known to improve when traditional course delivery is integrated with online learning (Stacey & Gerbic, 2007 ). Such improvement as noted may be an indicator of blended learning effectiveness. Our study however, delves into improved performance but seeks to establish the potential of blended learning effectiveness by considering grades obtained in a blended learning experiment. Score 50 and above is considered a pass in this study’s setting and learners scoring this and above will be considered to have passed. This will make our conclusions about the potential of blended learning effectiveness.

Regarding knowledge construction, it has been noted that effective learning occurs where learners are actively involved (Nurmela, Palonen, Lehtinen & Hakkarainen, 2003 , cited in Zhu, 2012 ) and this may be an indicator of learning environment effectiveness. Effective blended learning would require that learners are able to initiate, discover and accomplish the processes of knowledge construction as antecedents of blended learning effectiveness. A study by Rahman, Yasin and Jusoff ( 2011 ) indicated that learners were able to use some steps to construct meaning through an online discussion process through assignments given. In the process of giving and receiving among themselves, the authors noted that learners learned by writing what they understood. From our perspective, this can be considered to be accomplishment in the knowledge construction process. Their study further shows that learners construct meaning individually from assignments and this stage is referred to as pre-construction which for our study, is an aspect of discovery in the knowledge construction process.

Predictors of blended learning effectiveness

Researchers have dealt with success factors for online learning or those for traditional face-to-face learning but little is known about factors that predict blended learning effectiveness in view of learner characteristics and blended learning design features. This part of our study seeks to establish the learner characteristics/backgrounds and design features that predict blended learning effectiveness with regard to satisfaction, outcomes, motivation and knowledge construction. Song, Singleton, Hill, and Koh ( 2004 ) examined online learning effectiveness factors and found out that time management (a self-regulatory factor) was crucial for successful online learning. Eom, Wen, and Ashill ( 2006 ) using a survey found out that interaction, among other factors, was significant for learner satisfaction. Technical problems with regard to instructional design were a challenge to online learners thus not indicating effectiveness (Song et al., 2004 ), though the authors also indicated that descriptive statistics to a tune of 75% and time management (62%) impact on success of online learning. Arbaugh ( 2000 ) and Swan ( 2001 ) indicated that high levels of learner-instructor interaction are associated with high levels of user satisfaction and learning outcomes. A study by Naaj et al. ( 2012 ) indicated that technology and learner interactions, among other factors, influenced learner satisfaction in blended learning.

Objective and research questions of the current study

The objective of the current study is to investigate the effectiveness of blended learning in view of student satisfaction, knowledge construction, performance and intrinsic motivation and how they are related to student characteristics and blended learning design features in a blended learning environment.

Research questions

What are the student characteristics and blended learning design features for an effective blended learning environment?

Which factors (among the learner characteristics and blended learning design features) predict student satisfaction, learning outcomes, intrinsic motivation and knowledge construction?

Conceptual model of the present study

The reviewed literature clearly shows learner characteristics/background and blended learning design features play a part in blended learning effectiveness and some of them are significant predictors of effectiveness. The conceptual model for our study is depicted as follows (Fig.  1 ):

Conceptual model of the current study

Research design

This research applies a quantitative design where descriptive statistics are used for the student characteristics and design features data, t-tests for the age and gender variables to determine if they are significant in blended learning effectiveness and regression for predictors of blended learning effectiveness.

This study is based on an experiment in which learners participated during their study using face-to-face sessions and an on-line session of a blended learning design. A learning management system (Moodle) was used and learner characteristics/background and blended learning design features were measured in relation to learning effectiveness. It is therefore a planning evaluation research design as noted by Guskey ( 2000 ) since the outcomes are aimed at blended learning implementation at MMU. The plan under which the various variables were tested involved face-to-face study at the beginning of a 17 week semester which was followed by online teaching and learning in the second half of the semester. The last part of the semester was for another face-to-face to review work done during the online sessions and final semester examinations. A questionnaire with items on student characteristics, design features and learning outcomes was distributed among students from three schools and one directorate of postgraduate studies.

Participants

Cluster sampling was used to select a total of 238 learners to participate in this study. Out of the whole university population of students, three schools and one directorate were used. From these, one course unit was selected from each school and all the learners following the course unit were surveyed. In the school of Education ( n  = 70) and Business and Management Studies ( n  = 133), sophomore students were involved due to the fact that they have been introduced to ICT basics during their first year of study. Students of the third year were used from the department of technology in the School of Applied Sciences and Technology ( n  = 18) since most of the year two courses had a lot of practical aspects that could not be used for the online learning part. From the Postgraduate Directorate ( n  = 17), first and second year students were selected because learners attend a face-to-face session before they are given paper modules to study away from campus.

The study population comprised of 139 male students representing 58.4% and 99 females representing 41.6% with an average age of 24 years.

Instruments

The end of semester results were used to measure learner performance. The online self-regulated learning questionnaire (Barnard, Lan, To, Paton, & Lai, 2009 ) and the intrinsic motivation inventory (Deci & Ryan, 1982 ) were applied to measure the constructs on self regulation in the student characteristics and motivation in the learning outcome constructs. Other self-developed instruments were used for the other remaining variables of attitudes, computer competence, workload management, social and family support, satisfaction, knowledge construction, technology quality, interactions, learning management system tools and resources and face-to-face support.

Instrument reliability

Cronbach’s alpha was used to test reliability and the table below gives the results. All the scales and sub-scales had acceptable internal consistency reliabilities as shown in Table  1 below:

Data analysis

First, descriptive statistics was conducted. Shapiro-Wilk test was done to test normality of the data for it to qualify for parametric tests. The test results for normality of our data before the t- test resulted into significant levels (Male = .003, female = .000) thereby violating the normality assumption. We therefore used the skewness and curtosis results which were between −1.0 and +1.0 and assumed distribution to be sufficiently normal to qualify the data for a parametric test, (Pallant, 2010 ). An independent samples t -test was done to find out the differences in male and female performance to explain the gender characteristics in blended learning effectiveness. A one-way ANOVA between subjects was conducted to establish the differences in performance between age groups. Finally, multiple regression analysis was done between student variables and design elements with learning outcomes to determine the significant predictors for blended learning effectiveness.

Student characteristics, blended learning design features and learning outcomes ( RQ1 )

A t- test was carried out to establish the performance of male and female learners in the blended learning set up. This was aimed at finding out if male and female learners do perform equally well in blended learning given their different roles and responsibilities in society. It was found that male learners performed slightly better ( M  = 62.5) than their female counterparts ( M  = 61.1). An independent t -test revealed that the difference between the performances was not statistically significant ( t  = 1.569, df = 228, p  = 0.05, one tailed). The magnitude of the differences in the means is small with effect size ( d  = 0.18). A one way between subjects ANOVA was conducted on the performance of different age groups to establish the performance of learners of young and middle aged age groups (20–30, young & and 31–39, middle aged). This revealed a significant difference in performance (F(1,236 = 8.498, p < . 001).

Average percentages of the items making up the self regulated learning scale are used to report the findings about all the sub-scales in the learner characteristics/background scale. Results show that learner self-regulation was good enough at 72.3% in all the sub-scales of goal setting, environment structuring, task strategies, time management, help-seeking and self-evaluation among learners. The least in the scoring was task strategies at 67.7% and the highest was learner environment structuring at 76.3%. Learner attitude towards blended learning environment is at 76% in the sub-scales of learner autonomy, quality of instructional materials, course structure, course interface and interactions. The least scored here is attitude to course structure at 66% and their attitudes were high on learner autonomy and course interface both at 82%. Results on the learners’ computer competences are summarized in percentages in the table below (Table  2 ):

It can be seen that learners are skilled in word processing at 91%, email at 63.5%, spreadsheets at 68%, web browsers at 70.2% and html tools at 45.4%. They are therefore good enough in word processing and web browsing. Their computer confidence levels are reported at 75.3% and specifically feel very confident when it comes to working with a computer (85.7%). Levels of family and social support for learners during blended learning experiences are at 60.5 and 75% respectively. There is however a low score on learners being assisted by family members in situations of computer setbacks (33.2%) as 53.4% of the learners reported no assistance in this regard. A higher percentage (85.3%) is reported on learners getting support from family regarding provision of essentials for learning such as tuition. A big percentage of learners spend two hours on study while at home (35.3%) followed by one hour (28.2%) while only 9.7% spend more than three hours on study at home. Peers showed great care during the blended learning experience (81%) and their experiences were appreciated by the society (66%). Workload management by learners vis-à-vis studying is good at 60%. Learners reported that their workmates stand in for them at workplaces to enable them do their study in blended learning while 61% are encouraged by their bosses to go and improve their skills through further education and training. On the time spent on other activities not related to study, majority of the learners spend three hours (35%) while 19% spend 6 hours. Sixty percent of the learners have to answer to someone when they are not attending to other activities outside study compared to the 39.9% who do not and can therefore do study or those other activities.

The usability of the online system, tools and resources was below average as shown in the table below in percentages (Table  3 ):

However, learners became skilled at navigating around the learning management system (79%) and it was easy for them to locate course content, tools and resources needed such as course works, news, discussions and journal materials. They effectively used the communication tools (60%) and to work with peers by making posts (57%). They reported that online resources were well organized, user friendly and easy to access (71%) as well as well structured in a clear and understandable manner (72%). They therefore recommended the use of online resources for other course units in future (78%) because they were satisfied with them (64.3%). On the whole, the online resources were fine for the learners (67.2%) and useful as a learning resource (80%). The learners’ perceived usefulness/satisfaction with online system, tools, and resources was at 81% as the LMS tools helped them to communicate, work with peers and reflect on their learning (74%). They reported that using moodle helped them to learn new concepts, information and gaining skills (85.3%) as well as sharing what they knew or learned (76.4%). They enjoyed the course units (78%) and improved their skills with technology (89%).

Learner interactions were seen from three angles of cognitivism, collaborative learning and student-teacher interactions. Collaborative learning was average at 50% with low percentages in learners posting challenges to colleagues’ ideas online (34%) and posting ideas for colleagues to read online (37%). They however met oftentimes online (60%) and organized how they would work together in study during the face-to-face meetings (69%). The common form of communication medium frequently used by learners during the blended learning experience was by phone (34.5%) followed by whatsapp (21.8%), face book (21%), discussion board (11.8%) and email (10.9%). At the cognitive level, learners interacted with content at 72% by reading the posted content (81%), exchanging knowledge via the LMS (58.4%), participating in discussions on the forum (62%) and got course objectives and structure introduced during the face-to-face sessions (86%). Student-teacher interaction was reported at 71% through instructors individually working with them online (57.2%) and being well guided towards learning goals (81%). They did receive suggestions from instructors about resources to use in their learning (75.3%) and instructors provided learning input for them to come up with their own answers (71%).

The technology quality during the blended learning intervention was rated at 69% with availability of 72%, quality of the resources was at 68% with learners reporting that discussion boards gave right content necessary for study (71%) and the email exchanges containing relevant and much needed information (63.4%) as well as chats comprising of essential information to aid the learning (69%). Internet reliability was rated at 66% with a speed considered averagely good to facilitate online activities (63%). They however reported that there was intermittent breakdown during online study (67%) though they could complete their internet program during connection (63.4%). Learners eventually found it easy to download necessary materials for study in their blended learning experiences (71%).

Learner extent of use of the learning management system features was as shown in the table below in percentage (Table  4 ):

From the table, very rarely used features include the blog and wiki while very often used ones include the email, forum, chat and calendar.

The effectiveness of the LMS was rated at 79% by learners reporting that they found it useful (89%) and using it makes their learning activities much easier (75.2%). Moodle has helped learners to accomplish their learning tasks more quickly (74%) and that as a LMS, it is effective in teaching and learning (88%) with overall satisfaction levels at 68%. However, learners note challenges in the use of the LMS regarding its performance as having been problematic to them (57%) and only 8% of the learners reported navigation while 16% reported access as challenges.

Learner attitudes towards Face-to-face support were reported at 88% showing that the sessions were enjoyable experiences (89%) with high quality class discussions (86%) and therefore recommended that the sessions should continue in blended learning (89%). The frequency of the face-to-face sessions is shown in the table below as preferred by learners (Table  5 ).

Learners preferred face-to-face sessions after every month in the semester (33.6%) and at the beginning of the blended learning session only (27.7%).

Learners reported high intrinsic motivation levels with interest and enjoyment of tasks at 83.7%, perceived competence at 70.2%, effort/importance sub-scale at 80%, pressure/tension reported at 54%. The pressure percentage of 54% arises from learners feeling nervous (39.2%) and a lot of anxiety (53%) while 44% felt a lot of pressure during the blended learning experiences. Learners however reported the value/usefulness of blended learning at 91% with majority believing that studying online and face-to-face had value for them (93.3%) and were therefore willing to take part in blended learning (91.2%). They showed that it is beneficial for them (94%) and that it was an important way of studying (84.3%).

Learner satisfaction was reported at 81% especially with instructors (85%) high percentage reported on encouraging learner participation during the course of study 93%, course content (83%) with the highest being satisfaction with the good relationship between the objectives of the course units and the content (90%), technology (71%) with a high percentage on the fact that the platform was adequate for the online part of the learning (76%), interactions (75%) with participation in class at 79%, and face-to-face sessions (91%) with learner satisfaction high on face-to-face sessions being good enough for interaction and giving an overview of the courses when objectives were introduced at 92%.

Learners’ knowledge construction was reported at 78% with initiation and discovery scales scoring 84% with 88% specifically for discovering the learning points in the course units. The accomplishment scale in knowledge construction scored 71% and specifically the fact that learners were able to work together with group members to accomplish learning tasks throughout the study of the course units (79%). Learners developed reports from activities (67%), submitted solutions to discussion questions (68%) and did critique peer arguments (69%). Generally, learners performed well in blended learning in the final examination with an average pass of 62% and standard deviation of 7.5.

Significant predictors of blended learning effectiveness ( RQ 2)

A standard multiple regression analysis was done taking learner characteristics/background and design features as predictor variables and learning outcomes as criterion variables. The data was first tested to check if it met the linear regression test assumptions and results showed the correlations between the independent variables and each of the dependent variables (highest 0.62 and lowest 0.22) as not being too high, which indicated that multicollinearity was not a problem in our model. From the coefficients table, the VIF values ranged from 1.0 to 2.4, well below the cut off value of 10 and indicating no possibility of multicollinearity. The normal probability plot was seen to lie as a reasonably straight diagonal from bottom left to top right indicating normality of our data. Linearity was found suitable from the scatter plot of the standardized residuals and was rectangular in distribution. Outliers were no cause for concern in our data since we had only 1% of all cases falling outside 3.0 thus proving the data as a normally distributed sample. Our R -square values was at 0.525 meaning that the independent variables explained about 53% of the variance in overall satisfaction, motivation and knowledge construction of the learners. All the models explaining the three dependent variables of learner satisfaction, intrinsic motivation and knowledge construction were significant at the 0.000 probability level (Table  6 ).

From the table above, design features (technology quality and online tools and resources), and learner characteristics (attitudes to blended learning, self-regulation) were significant predictors of learner satisfaction in blended learning. This means that good technology with the features involved and the learner positive attitudes with capacity to do blended learning with self drive led to their satisfaction. The design features (technology quality, interactions) and learner characteristics (self regulation and social support), were found to be significant predictors of learner knowledge construction. This implies that learners’ capacity to go on their work by themselves supported by peers and high levels of interaction using the quality technology led them to construct their own ideas in blended learning. Design features (technology quality, online tools and resources as well as learner interactions) and learner characteristics (self regulation), significantly predicted the learners’ intrinsic motivation in blended learning suggesting that good technology, tools and high interaction levels with independence in learning led to learners being highly motivated. Finally, none of the independent variables considered under this study were predictors of learning outcomes (grade).

In this study we have investigated learning outcomes as dependent variables to establish if particular learner characteristics/backgrounds and design features are related to the outcomes for blended learning effectiveness and if they predict learning outcomes in blended learning. We took students from three schools out of five and one directorate of post-graduate studies at a Ugandan University. The study suggests that the characteristics and design features examined are good drivers towards an effective blended learning environment though a few of them predicted learning outcomes in blended learning.

Student characteristics/background, blended learning design features and learning outcomes

The learner characteristics, design features investigated are potentially important for an effective blended learning environment. Performance by gender shows a balance with no statistical differences between male and female. There are statistically significant differences ( p  < .005) in the performance between age groups with means of 62% for age group 20–30 and 67% for age group 31 –39. The indicators of self regulation exist as well as positive attitudes towards blended learning. Learners do well with word processing, e-mail, spreadsheets and web browsers but still lag below average in html tools. They show computer confidence at 75.3%; which gives prospects for an effective blended learning environment in regard to their computer competence and confidence. The levels of family and social support for learners stand at 61 and 75% respectively, indicating potential for blended learning to be effective. The learners’ balance between study and work is a drive factor towards blended learning effectiveness since their management of their workload vis a vis study time is at 60 and 61% of the learners are encouraged to go for study by their bosses. Learner satisfaction with the online system and its tools shows prospect for blended learning effectiveness but there are challenges in regard to locating course content and assignments, submitting their work and staying on a task during online study. Average collaborative, cognitive learning as well as learner-teacher interactions exist as important factors. Technology quality for effective blended learning is a potential for effectiveness though features like the blog and wiki are rarely used by learners. Face-to-face support is satisfactory and it should be conducted every month. There is high intrinsic motivation, satisfaction and knowledge construction as well as good performance in examinations ( M  = 62%, SD = 7.5); which indicates potentiality for blended learning effectiveness.

Significant predictors of blended learning effectiveness

Among the design features, technology quality, online tools and face-to-face support are predictors of learner satisfaction while learner characteristics of self regulation and attitudes to blended learning are predictors of satisfaction. Technology quality and interactions are the only design features predicting learner knowledge construction, while social support, among the learner backgrounds, is a predictor of knowledge construction. Self regulation as a learner characteristic is a predictor of knowledge construction. Self regulation is the only learner characteristic predicting intrinsic motivation in blended learning while technology quality, online tools and interactions are the design features predicting intrinsic motivation. However, all the independent variables are not significant predictors of learning performance in blended learning.

The high computer competences and confidence is an antecedent factor for blended learning effectiveness as noted by Hadad ( 2007 ) and this study finds learners confident and competent enough for the effectiveness of blended learning. A lack in computer skills causes failure in e-learning and blended learning as noted by Shraim and Khlaif ( 2010 ). From our study findings, this is no threat for blended learning our case as noted by our results. Contrary to Cohen et al. ( 2012 ) findings that learners’ family responsibilities and hours of employment can impede their process of learning, it is not the case here since they are drivers to the blended learning process. Time conflict, as compounded by family, employment status and management support (Packham et al., 2004 ) were noted as causes of learner failure and drop out of online courses. Our results show, on the contrary, that these factors are drivers for blended learning effectiveness because learners have a good balance between work and study and are supported by bosses to study. In agreement with Selim ( 2007 ), learner positive attitudes towards e-and blended learning environments are success factors. In line with Coldwell et al. ( 2008 ), no statistically significant differences exist between age groups. We however note that Coldwel, et al dealt with young, middle-aged and old above 45 years whereas we dealt with young and middle aged only.

Learner interactions at all levels are good enough and contrary to Astleitner, ( 2000 ) that their absence makes learners withdraw, they are a drive factor here. In line with Loukis (2007) the LMS quality, reliability and ease of use lead to learning efficiency as technology quality, online tools are predictors of learner satisfaction and intrinsic motivation. Face-to-face sessions should continue on a monthly basis as noted here and is in agreement with Marriot et al. ( 2004 ) who noted learner preference for it for facilitating social interaction and communication skills. High learner intrinsic motivation leads to persistence in online courses as noted by Menager-Beeley, ( 2004 ) and is high enough in our study. This implies a possibility of an effectiveness blended learning environment. The causes of learner dissatisfaction noted by Islam ( 2014 ) such as incompetence in the use of the LMS are contrary to our results in our study, while the one noted by Hara and Kling, ( 2001 ) as resulting from technical difficulties and ambiguous course instruction are no threat from our findings. Student-teacher interaction showed a relation with satisfaction according to Swan ( 2001 ) but is not a predictor in our study. Initiating knowledge construction by learners for blended learning effectiveness is exhibited in our findings and agrees with Rahman, Yasin and Jusof ( 2011 ). Our study has not agreed with Eom et al. ( 2006 ) who found learner interactions as predictors of learner satisfaction but agrees with Naaj et al. ( 2012 ) regarding technology as a predictor of learner satisfaction.

Conclusion and recommendations

An effective blended learning environment is necessary in undertaking innovative pedagogical approaches through the use of technology in teaching and learning. An examination of learner characteristics/background, design features and learning outcomes as factors for effectiveness can help to inform the design of effective learning environments that involve face-to-face sessions and online aspects. Most of the student characteristics and blended learning design features dealt with in this study are important factors for blended learning effectiveness. None of the independent variables were identified as significant predictors of student performance. These gaps are open for further investigation in order to understand if they can be significant predictors of blended learning effectiveness in a similar or different learning setting.

In planning to design and implement blended learning, we are mindful of the implications raised by this study which is a planning evaluation research for the design and eventual implementation of blended learning. Universities should be mindful of the interplay between the learner characteristics, design features and learning outcomes which are indicators of blended learning effectiveness. From this research, learners manifest high potential to take on blended learning more especially in regard to learner self-regulation exhibited. Blended learning is meant to increase learners’ levels of knowledge construction in order to create analytical skills in them. Learner ability to assess and critically evaluate knowledge sources is hereby established in our findings. This can go a long way in producing skilled learners who can be innovative graduates enough to satisfy employment demands through creativity and innovativeness. Technology being less of a shock to students gives potential for blended learning design. Universities and other institutions of learning should continue to emphasize blended learning approaches through installation of learning management systems along with strong internet to enable effective learning through technology especially in the developing world.

Abubakar, D. & Adetimirin. (2015). Influence of computer literacy on post-graduates’ use of e-resources in Nigerian University Libraries. Library Philosophy and Practice. From http://digitalcommons.unl.edu/libphilprac/ . Retrieved 18 Aug 2015.

Ahmad, N., & Al-Khanjari, Z. (2011). Effect of Moodle on learning: An Oman perception. International Journal of Digital Information and Wireless Communications (IJDIWC), 1 (4), 746–752.

Google Scholar  

Anderson, T. (2004). Theory and Practice of Online Learning . Canada: AU Press, Athabasca University.

Arbaugh, J. B. (2000). How classroom environment and student engagement affect learning in internet-basedMBAcourses. Business Communication Quarterly, 63 (4), 9–18.

Article   Google Scholar  

Askar, P. & Altun, A. (2008). Learner satisfaction on blended learning. E-Leader Krakow , 2008.

Astleitner, H. (2000) Dropout and distance education. A review of motivational and emotional strategies to reduce dropout in web-based distance education. In Neuwe Medien in Unterricht, Aus-und Weiterbildung Waxmann Munster, New York.

Barnard, L., Lan, W. Y., To, Y. M., Paton, V. O., & Lai, S. (2009). Measuring self regulation in online and blended learning environments’. Internet and Higher Education, 12 (1), 1–6.

Beard, L. A., Harper, C., & Riley, G. (2004). Online versus on-campus instruction: student attitudes & perceptions. TechTrends, 48 (6), 29–31.

Berenson, R., Boyles, G., & Weaver, A. (2008). Emotional intelligence as a predictor for success in online learning. International Review of Research in open & Distance Learning, 9 (2), 1–16.

Blocker, J. M., & Tucker, G. (2001). Using constructivist principles in designing and integrating online collaborative interactions. In F. Fuller & R. McBride (Eds.), Distance education. Proceedings of the Society for Information Technology & Teacher Education International Conference (pp. 32–36). ERIC Document Reproduction Service No. ED 457 822.

Cohen, K. E., Stage, F. K., Hammack, F. M., & Marcus, A. (2012). Persistence of master’s students in the United States: Developing and testing of a conceptual model . USA: PhD Dissertation, New York University.

Coldwell, J., Craig, A., Paterson, T., & Mustard, J. (2008). Online students: Relationships between participation, demographics and academic performance. The Electronic Journal of e-learning, 6 (1), 19–30.

Deci, E. L., & Ryan, R. M. (1982). Intrinsic Motivation Inventory. Available from selfdeterminationtheory.org/intrinsic-motivation-inventory/ . Accessed 2 Aug 2016.

Delone, W. H., & McLean, E. R. (2003). The Delone and McLean model of information systems success: A Ten-year update. Journal of Management Information Systems, 19 (4), 9–30.

Demirkol, M., & Kazu, I. Y. (2014). Effect of blended environment model on high school students’ academic achievement. The Turkish Online Journal of Educational Technology, 13 (1), 78–87.

Eom, S., Wen, H., & Ashill, N. (2006). The determinants of students’ perceived learning outcomes and satisfaction in university online education: an empirical investigation’. Decision Sciences Journal of Innovative Education, 4 (2), 215–235.

Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. Internet and Higher Education, 7 (2), 95–105.

Goyal, E., & Tambe, S. (2015). Effectiveness of Moodle-enabled blended learning in private Indian Business School teaching NICHE programs. The Online Journal of New Horizons in Education, 5 (2), 14–22.

Green, J., Nelson, G., Martin, A. J., & Marsh, H. (2006). The causal ordering of self-concept and academic motivation and its effect on academic achievement. International Education Journal, 7 (4), 534–546.

Guskey, T. R. (2000). Evaluating Professional Development . Thousands Oaks: Corwin Press.

Hadad, W. (2007). ICT-in-education toolkit reference handbook . InfoDev. from http://www.infodev.org/en/Publication.301.html . Retrieved 04 Aug 2015.

Hara, N. & Kling, R. (2001). Student distress in web-based distance education. Educause Quarterly. 3 (2001).

Heinich, R., Molenda, M., Russell, J. D., & Smaldino, S. E. (2001). Instructional Media and Technologies for Learning (7th ed.). Englewood Cliffs: Prentice-Hall.

Hofmann, J. (2014). Solutions to the top 10 challenges of blended learning. Top 10 challenges of blended learning. Available on cedma-europe.org .

Islam, A. K. M. N. (2014). Sources of satisfaction and dissatisfaction with a learning management system in post-adoption stage: A critical incident technique approach. Computers in Human Behaviour, 30 , 249–261.

Kelley, D. H. & Gorham, J. (2009) Effects of immediacy on recall of information. Communication Education, 37 (3), 198–207.

Kenney, J., & Newcombe, E. (2011). Adopting a blended learning approach: Challenges, encountered and lessons learned in an action research study. Journal of Asynchronous Learning Networks, 15 (1), 45–57.

Kintu, M. J., & Zhu, C. (2016). Student characteristics and learning outcomes in a blended learning environment intervention in a Ugandan University. Electronic Journal of e-Learning, 14 (3), 181–195.

Kuo, Y., Walker, A. E., Belland, B. R., & Schroder, L. E. E. (2013). A predictive study of student satisfaction in online education programs. International Review of Research in Open and Distributed Learning, 14 (1), 16–39.

Kwak, D. W., Menezes, F. M., & Sherwood, C. (2013). Assessing the impact of blended learning on student performance. Educational Technology & Society, 15 (1), 127–136.

Lim, D. H., & Kim, H. J. (2003). Motivation and learner characteristics affecting online learning and learning application. Journal of Educational Technology Systems, 31 (4), 423–439.

Lim, D. H., & Morris, M. L. (2009). Learner and instructional factors influencing learner outcomes within a blended learning environment. Educational Technology & Society, 12 (4), 282–293.

Lin, B., & Vassar, J. A. (2009). Determinants for success in online learning communities. International Journal of Web-based Communities, 5 (3), 340–350.

Loukis, E., Georgiou, S. & Pazalo, K. (2007). A value flow model for the evaluation of an e-learning service. ECIS, 2007 Proceedings, paper 175.

Lynch, R., & Dembo, M. (2004). The relationship between self regulation and online learning in a blended learning context. The International Review of Research in Open and Distributed Learning, 5 (2), 1–16.

Marriot, N., Marriot, P., & Selwyn. (2004). Accounting undergraduates’ changing use of ICT and their views on using the internet in higher education-A Research note. Accounting Education, 13 (4), 117–130.

Menager-Beeley, R. (2004). Web-based distance learning in a community college: The influence of task values on task choice, retention and commitment. (Doctoral dissertation, University of Southern California). Dissertation Abstracts International, 64 (9-A), 3191.

Naaj, M. A., Nachouki, M., & Ankit, A. (2012). Evaluating student satisfaction with blended learning in a gender-segregated environment. Journal of Information Technology Education: Research, 11 , 185–200.

Nurmela, K., Palonen, T., Lehtinen, E. & Hakkarainen, K. (2003). Developing tools for analysing CSCL process. In Wasson, B. Ludvigsen, S. & Hoppe, V. (eds), Designing for change in networked learning environments (pp 333–342). Dordrecht, The Netherlands, Kluwer.

Osgerby, J. (2013). Students’ perceptions of the introduction of a blended learning environment: An exploratory case study. Accounting Education, 22 (1), 85–99.

Oxford Group, (2013). Blended learning-current use, challenges and best practices. From http://www.kineo.com/m/0/blended-learning-report-202013.pdf . Accessed on 17 Mar 2016.

Packham, G., Jones, P., Miller, C., & Thomas, B. (2004). E-learning and retention key factors influencing student withdrawal. Education and Training, 46 (6–7), 335–342.

Pallant, J. (2010). SPSS Survival Mannual (4th ed.). Maidenhead: OUP McGraw-Hill.

Park, J.-H., & Choi, H. J. (2009). Factors influencing adult learners’ decision to drop out or persist in online learning. Educational Technology & Society, 12 (4), 207–217.

Picciano, A., & Seaman, J. (2007). K-12 online learning: A survey of U.S. school district administrators . New York, USA: Sloan-C.

Piccoli, G., Ahmad, R., & Ives, B. (2001). Web-based virtual learning environments: a research framework and a preliminary assessment of effectiveness in basic IT skill training. MIS Quarterly, 25 (4), 401–426.

Pituch, K. A., & Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47 (2), 222–244.

Rahman, S. et al, (2011). Knowledge construction process in online learning. Middle East Journal of Scientific Research, 8 (2), 488–492.

Rovai, A. P. (2003). In search of higher persistence rates in distance education online programs. Computers & Education, 6 (1), 1–16.

Sankaran, S., & Bui, T. (2001). Impact of learning strategies and motivation on performance: A study in Web-based instruction. Journal of Instructional Psychology, 28 (3), 191–198.

Selim, H. M. (2007). Critical success factors for e-learning acceptance: Confirmatory factor models. Computers & Education, 49 (2), 396–413.

Shraim, K., & Khlaif, Z. N. (2010). An e-learning approach to secondary education in Palestine: opportunities and challenges. Information Technology for Development, 16 (3), 159–173.

Shrain, K. (2012). Moving towards e-learning paradigm: Readiness of higher education instructors in Palestine. International Journal on E-Learning, 11 (4), 441–463.

Song, L., Singleton, E. S., Hill, J. R., & Koh, M. H. (2004). Improving online learning: student perceptions of useful and challenging characteristics’. Internet and Higher Education, 7 (1), 59–70.

Stacey, E., & Gerbic, P. (2007). Teaching for blended learning: research perspectives from on-campus and distance students. Education and Information Technologies, 12 , 165–174.

Swan, K. (2001). Virtual interactivity: design factors affecting student satisfaction and perceived learning in asynchronous online courses. Distance Education, 22 (2), 306–331.

Article   MathSciNet   Google Scholar  

Thompson, E. (2004). Distance education drop-out: What can we do? In R. Pospisil & L. Willcoxson (Eds.), Learning Through Teaching (Proceedings of the 6th Annual Teaching Learning Forum, pp. 324–332). Perth, Australia: Murdoch University.

Tselios, N., Daskalakis, S., & Papadopoulou, M. (2011). Assessing the acceptance of a blended learning university course. Educational Technology & Society, 14 (2), 224–235.

Willging, P. A., & Johnson, S. D. (2009). Factors that influence students’ decision to drop-out of online courses. Journal of Asynchronous Learning Networks, 13 (3), 115–127.

Zhu, C. (2012). Student satisfaction, performance and knowledge construction in online collaborative learning. Educational Technology & Society, 15 (1), 127–137.

Zielinski, D. (2000). Can you keep learners online? Training, 37 (3), 64–75.

Download references

Authors’ contribution

MJK conceived the study idea, developed the conceptual framework, collected the data, analyzed it and wrote the article. CZ gave the technical advice concerning the write-up and advised on relevant corrections to be made before final submission. EK did the proof-reading of the article as well as language editing. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and affiliations.

Mountains of the Moon University, P.O. Box 837, Fort Portal, Uganda

Mugenyi Justice Kintu & Edmond Kagambe

Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Ixelles, Belgium

Mugenyi Justice Kintu & Chang Zhu

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Mugenyi Justice Kintu .

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Kintu, M.J., Zhu, C. & Kagambe, E. Blended learning effectiveness: the relationship between student characteristics, design features and outcomes. Int J Educ Technol High Educ 14 , 7 (2017). https://doi.org/10.1186/s41239-017-0043-4

Download citation

Received : 13 July 2016

Accepted : 23 November 2016

Published : 06 February 2017

DOI : https://doi.org/10.1186/s41239-017-0043-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Blended learning effectiveness
  • Learner characteristics
  • Design features
  • Learning outcomes and significant predictors

research paper about online and modular learning

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Students’ online learning challenges during the pandemic and how they cope with them: The case of the Philippines

Jessie s. barrot.

College of Education, Arts and Sciences, National University, Manila, Philippines

Ian I. Llenares

Leo s. del rosario, associated data.

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Recently, the education system has faced an unprecedented health crisis that has shaken up its foundation. Given today’s uncertainties, it is vital to gain a nuanced understanding of students’ online learning experience in times of the COVID-19 pandemic. Although many studies have investigated this area, limited information is available regarding the challenges and the specific strategies that students employ to overcome them. Thus, this study attempts to fill in the void. Using a mixed-methods approach, the findings revealed that the online learning challenges of college students varied in terms of type and extent. Their greatest challenge was linked to their learning environment at home, while their least challenge was technological literacy and competency. The findings further revealed that the COVID-19 pandemic had the greatest impact on the quality of the learning experience and students’ mental health. In terms of strategies employed by students, the most frequently used were resource management and utilization, help-seeking, technical aptitude enhancement, time management, and learning environment control. Implications for classroom practice, policy-making, and future research are discussed.

Introduction

Since the 1990s, the world has seen significant changes in the landscape of education as a result of the ever-expanding influence of technology. One such development is the adoption of online learning across different learning contexts, whether formal or informal, academic and non-academic, and residential or remotely. We began to witness schools, teachers, and students increasingly adopt e-learning technologies that allow teachers to deliver instruction interactively, share resources seamlessly, and facilitate student collaboration and interaction (Elaish et al., 2019 ; Garcia et al., 2018 ). Although the efficacy of online learning has long been acknowledged by the education community (Barrot, 2020 , 2021 ; Cavanaugh et al., 2009 ; Kebritchi et al., 2017 ; Tallent-Runnels et al., 2006 ; Wallace, 2003 ), evidence on the challenges in its implementation continues to build up (e.g., Boelens et al., 2017 ; Rasheed et al., 2020 ).

Recently, the education system has faced an unprecedented health crisis (i.e., COVID-19 pandemic) that has shaken up its foundation. Thus, various governments across the globe have launched a crisis response to mitigate the adverse impact of the pandemic on education. This response includes, but is not limited to, curriculum revisions, provision for technological resources and infrastructure, shifts in the academic calendar, and policies on instructional delivery and assessment. Inevitably, these developments compelled educational institutions to migrate to full online learning until face-to-face instruction is allowed. The current circumstance is unique as it could aggravate the challenges experienced during online learning due to restrictions in movement and health protocols (Gonzales et al., 2020 ; Kapasia et al., 2020 ). Given today’s uncertainties, it is vital to gain a nuanced understanding of students’ online learning experience in times of the COVID-19 pandemic. To date, many studies have investigated this area with a focus on students’ mental health (Copeland et al., 2021 ; Fawaz et al., 2021 ), home learning (Suryaman et al., 2020 ), self-regulation (Carter et al., 2020 ), virtual learning environment (Almaiah et al., 2020 ; Hew et al., 2020 ; Tang et al., 2020 ), and students’ overall learning experience (e.g., Adarkwah, 2021 ; Day et al., 2021 ; Khalil et al., 2020 ; Singh et al., 2020 ). There are two key differences that set the current study apart from the previous studies. First, it sheds light on the direct impact of the pandemic on the challenges that students experience in an online learning space. Second, the current study explores students’ coping strategies in this new learning setup. Addressing these areas would shed light on the extent of challenges that students experience in a full online learning space, particularly within the context of the pandemic. Meanwhile, our nuanced understanding of the strategies that students use to overcome their challenges would provide relevant information to school administrators and teachers to better support the online learning needs of students. This information would also be critical in revisiting the typology of strategies in an online learning environment.

Literature review

Education and the covid-19 pandemic.

In December 2019, an outbreak of a novel coronavirus, known as COVID-19, occurred in China and has spread rapidly across the globe within a few months. COVID-19 is an infectious disease caused by a new strain of coronavirus that attacks the respiratory system (World Health Organization, 2020 ). As of January 2021, COVID-19 has infected 94 million people and has caused 2 million deaths in 191 countries and territories (John Hopkins University, 2021 ). This pandemic has created a massive disruption of the educational systems, affecting over 1.5 billion students. It has forced the government to cancel national examinations and the schools to temporarily close, cease face-to-face instruction, and strictly observe physical distancing. These events have sparked the digital transformation of higher education and challenged its ability to respond promptly and effectively. Schools adopted relevant technologies, prepared learning and staff resources, set systems and infrastructure, established new teaching protocols, and adjusted their curricula. However, the transition was smooth for some schools but rough for others, particularly those from developing countries with limited infrastructure (Pham & Nguyen, 2020 ; Simbulan, 2020 ).

Inevitably, schools and other learning spaces were forced to migrate to full online learning as the world continues the battle to control the vicious spread of the virus. Online learning refers to a learning environment that uses the Internet and other technological devices and tools for synchronous and asynchronous instructional delivery and management of academic programs (Usher & Barak, 2020 ; Huang, 2019 ). Synchronous online learning involves real-time interactions between the teacher and the students, while asynchronous online learning occurs without a strict schedule for different students (Singh & Thurman, 2019 ). Within the context of the COVID-19 pandemic, online learning has taken the status of interim remote teaching that serves as a response to an exigency. However, the migration to a new learning space has faced several major concerns relating to policy, pedagogy, logistics, socioeconomic factors, technology, and psychosocial factors (Donitsa-Schmidt & Ramot, 2020 ; Khalil et al., 2020 ; Varea & González-Calvo, 2020 ). With reference to policies, government education agencies and schools scrambled to create fool-proof policies on governance structure, teacher management, and student management. Teachers, who were used to conventional teaching delivery, were also obliged to embrace technology despite their lack of technological literacy. To address this problem, online learning webinars and peer support systems were launched. On the part of the students, dropout rates increased due to economic, psychological, and academic reasons. Academically, although it is virtually possible for students to learn anything online, learning may perhaps be less than optimal, especially in courses that require face-to-face contact and direct interactions (Franchi, 2020 ).

Related studies

Recently, there has been an explosion of studies relating to the new normal in education. While many focused on national policies, professional development, and curriculum, others zeroed in on the specific learning experience of students during the pandemic. Among these are Copeland et al. ( 2021 ) and Fawaz et al. ( 2021 ) who examined the impact of COVID-19 on college students’ mental health and their coping mechanisms. Copeland et al. ( 2021 ) reported that the pandemic adversely affected students’ behavioral and emotional functioning, particularly attention and externalizing problems (i.e., mood and wellness behavior), which were caused by isolation, economic/health effects, and uncertainties. In Fawaz et al.’s ( 2021 ) study, students raised their concerns on learning and evaluation methods, overwhelming task load, technical difficulties, and confinement. To cope with these problems, students actively dealt with the situation by seeking help from their teachers and relatives and engaging in recreational activities. These active-oriented coping mechanisms of students were aligned with Carter et al.’s ( 2020 ), who explored students’ self-regulation strategies.

In another study, Tang et al. ( 2020 ) examined the efficacy of different online teaching modes among engineering students. Using a questionnaire, the results revealed that students were dissatisfied with online learning in general, particularly in the aspect of communication and question-and-answer modes. Nonetheless, the combined model of online teaching with flipped classrooms improved students’ attention, academic performance, and course evaluation. A parallel study was undertaken by Hew et al. ( 2020 ), who transformed conventional flipped classrooms into fully online flipped classes through a cloud-based video conferencing app. Their findings suggested that these two types of learning environments were equally effective. They also offered ways on how to effectively adopt videoconferencing-assisted online flipped classrooms. Unlike the two studies, Suryaman et al. ( 2020 ) looked into how learning occurred at home during the pandemic. Their findings showed that students faced many obstacles in a home learning environment, such as lack of mastery of technology, high Internet cost, and limited interaction/socialization between and among students. In a related study, Kapasia et al. ( 2020 ) investigated how lockdown impacts students’ learning performance. Their findings revealed that the lockdown made significant disruptions in students’ learning experience. The students also reported some challenges that they faced during their online classes. These include anxiety, depression, poor Internet service, and unfavorable home learning environment, which were aggravated when students are marginalized and from remote areas. Contrary to Kapasia et al.’s ( 2020 ) findings, Gonzales et al. ( 2020 ) found that confinement of students during the pandemic had significant positive effects on their performance. They attributed these results to students’ continuous use of learning strategies which, in turn, improved their learning efficiency.

Finally, there are those that focused on students’ overall online learning experience during the COVID-19 pandemic. One such study was that of Singh et al. ( 2020 ), who examined students’ experience during the COVID-19 pandemic using a quantitative descriptive approach. Their findings indicated that students appreciated the use of online learning during the pandemic. However, half of them believed that the traditional classroom setting was more effective than the online learning platform. Methodologically, the researchers acknowledge that the quantitative nature of their study restricts a deeper interpretation of the findings. Unlike the above study, Khalil et al. ( 2020 ) qualitatively explored the efficacy of synchronized online learning in a medical school in Saudi Arabia. The results indicated that students generally perceive synchronous online learning positively, particularly in terms of time management and efficacy. However, they also reported technical (internet connectivity and poor utility of tools), methodological (content delivery), and behavioral (individual personality) challenges. Their findings also highlighted the failure of the online learning environment to address the needs of courses that require hands-on practice despite efforts to adopt virtual laboratories. In a parallel study, Adarkwah ( 2021 ) examined students’ online learning experience during the pandemic using a narrative inquiry approach. The findings indicated that Ghanaian students considered online learning as ineffective due to several challenges that they encountered. Among these were lack of social interaction among students, poor communication, lack of ICT resources, and poor learning outcomes. More recently, Day et al. ( 2021 ) examined the immediate impact of COVID-19 on students’ learning experience. Evidence from six institutions across three countries revealed some positive experiences and pre-existing inequities. Among the reported challenges are lack of appropriate devices, poor learning space at home, stress among students, and lack of fieldwork and access to laboratories.

Although there are few studies that report the online learning challenges that higher education students experience during the pandemic, limited information is available regarding the specific strategies that they use to overcome them. It is in this context that the current study was undertaken. This mixed-methods study investigates students’ online learning experience in higher education. Specifically, the following research questions are addressed: (1) What is the extent of challenges that students experience in an online learning environment? (2) How did the COVID-19 pandemic impact the online learning challenges that students experience? (3) What strategies did students use to overcome the challenges?

Conceptual framework

The typology of challenges examined in this study is largely based on Rasheed et al.’s ( 2020 ) review of students’ experience in an online learning environment. These challenges are grouped into five general clusters, namely self-regulation (SRC), technological literacy and competency (TLCC), student isolation (SIC), technological sufficiency (TSC), and technological complexity (TCC) challenges (Rasheed et al., 2020 , p. 5). SRC refers to a set of behavior by which students exercise control over their emotions, actions, and thoughts to achieve learning objectives. TLCC relates to a set of challenges about students’ ability to effectively use technology for learning purposes. SIC relates to the emotional discomfort that students experience as a result of being lonely and secluded from their peers. TSC refers to a set of challenges that students experience when accessing available online technologies for learning. Finally, there is TCC which involves challenges that students experience when exposed to complex and over-sufficient technologies for online learning.

To extend Rasheed et al. ( 2020 ) categories and to cover other potential challenges during online classes, two more clusters were added, namely learning resource challenges (LRC) and learning environment challenges (LEC) (Buehler, 2004 ; Recker et al., 2004 ; Seplaki et al., 2014 ; Xue et al., 2020 ). LRC refers to a set of challenges that students face relating to their use of library resources and instructional materials, whereas LEC is a set of challenges that students experience related to the condition of their learning space that shapes their learning experiences, beliefs, and attitudes. Since learning environment at home and learning resources available to students has been reported to significantly impact the quality of learning and their achievement of learning outcomes (Drane et al., 2020 ; Suryaman et al., 2020 ), the inclusion of LRC and LEC would allow us to capture other important challenges that students experience during the pandemic, particularly those from developing regions. This comprehensive list would provide us a clearer and detailed picture of students’ experiences when engaged in online learning in an emergency. Given the restrictions in mobility at macro and micro levels during the pandemic, it is also expected that such conditions would aggravate these challenges. Therefore, this paper intends to understand these challenges from students’ perspectives since they are the ones that are ultimately impacted when the issue is about the learning experience. We also seek to explore areas that provide inconclusive findings, thereby setting the path for future research.

Material and methods

The present study adopted a descriptive, mixed-methods approach to address the research questions. This approach allowed the researchers to collect complex data about students’ experience in an online learning environment and to clearly understand the phenomena from their perspective.

Participants

This study involved 200 (66 male and 134 female) students from a private higher education institution in the Philippines. These participants were Psychology, Physical Education, and Sports Management majors whose ages ranged from 17 to 25 ( x ̅  = 19.81; SD  = 1.80). The students have been engaged in online learning for at least two terms in both synchronous and asynchronous modes. The students belonged to low- and middle-income groups but were equipped with the basic online learning equipment (e.g., computer, headset, speakers) and computer skills necessary for their participation in online classes. Table ​ Table1 1 shows the primary and secondary platforms that students used during their online classes. The primary platforms are those that are formally adopted by teachers and students in a structured academic context, whereas the secondary platforms are those that are informally and spontaneously used by students and teachers for informal learning and to supplement instructional delivery. Note that almost all students identified MS Teams as their primary platform because it is the official learning management system of the university.

Participants’ Online Learning Platforms

Informed consent was sought from the participants prior to their involvement. Before students signed the informed consent form, they were oriented about the objectives of the study and the extent of their involvement. They were also briefed about the confidentiality of information, their anonymity, and their right to refuse to participate in the investigation. Finally, the participants were informed that they would incur no additional cost from their participation.

Instrument and data collection

The data were collected using a retrospective self-report questionnaire and a focused group discussion (FGD). A self-report questionnaire was considered appropriate because the indicators relate to affective responses and attitude (Araujo et al., 2017 ; Barrot, 2016 ; Spector, 1994 ). Although the participants may tell more than what they know or do in a self-report survey (Matsumoto, 1994 ), this challenge was addressed by explaining to them in detail each of the indicators and using methodological triangulation through FGD. The questionnaire was divided into four sections: (1) participant’s personal information section, (2) the background information on the online learning environment, (3) the rating scale section for the online learning challenges, (4) the open-ended section. The personal information section asked about the students’ personal information (name, school, course, age, and sex), while the background information section explored the online learning mode and platforms (primary and secondary) used in class, and students’ length of engagement in online classes. The rating scale section contained 37 items that relate to SRC (6 items), TLCC (10 items), SIC (4 items), TSC (6 items), TCC (3 items), LRC (4 items), and LEC (4 items). The Likert scale uses six scores (i.e., 5– to a very great extent , 4– to a great extent , 3– to a moderate extent , 2– to some extent , 1– to a small extent , and 0 –not at all/negligible ) assigned to each of the 37 items. Finally, the open-ended questions asked about other challenges that students experienced, the impact of the pandemic on the intensity or extent of the challenges they experienced, and the strategies that the participants employed to overcome the eight different types of challenges during online learning. Two experienced educators and researchers reviewed the questionnaire for clarity, accuracy, and content and face validity. The piloting of the instrument revealed that the tool had good internal consistency (Cronbach’s α = 0.96).

The FGD protocol contains two major sections: the participants’ background information and the main questions. The background information section asked about the students’ names, age, courses being taken, online learning mode used in class. The items in the main questions section covered questions relating to the students’ overall attitude toward online learning during the pandemic, the reasons for the scores they assigned to each of the challenges they experienced, the impact of the pandemic on students’ challenges, and the strategies they employed to address the challenges. The same experts identified above validated the FGD protocol.

Both the questionnaire and the FGD were conducted online via Google survey and MS Teams, respectively. It took approximately 20 min to complete the questionnaire, while the FGD lasted for about 90 min. Students were allowed to ask for clarification and additional explanations relating to the questionnaire content, FGD, and procedure. Online surveys and interview were used because of the ongoing lockdown in the city. For the purpose of triangulation, 20 (10 from Psychology and 10 from Physical Education and Sports Management) randomly selected students were invited to participate in the FGD. Two separate FGDs were scheduled for each group and were facilitated by researcher 2 and researcher 3, respectively. The interviewers ensured that the participants were comfortable and open to talk freely during the FGD to avoid social desirability biases (Bergen & Labonté, 2020 ). These were done by informing the participants that there are no wrong responses and that their identity and responses would be handled with the utmost confidentiality. With the permission of the participants, the FGD was recorded to ensure that all relevant information was accurately captured for transcription and analysis.

Data analysis

To address the research questions, we used both quantitative and qualitative analyses. For the quantitative analysis, we entered all the data into an excel spreadsheet. Then, we computed the mean scores ( M ) and standard deviations ( SD ) to determine the level of challenges experienced by students during online learning. The mean score for each descriptor was interpreted using the following scheme: 4.18 to 5.00 ( to a very great extent ), 3.34 to 4.17 ( to a great extent ), 2.51 to 3.33 ( to a moderate extent ), 1.68 to 2.50 ( to some extent ), 0.84 to 1.67 ( to a small extent ), and 0 to 0.83 ( not at all/negligible ). The equal interval was adopted because it produces more reliable and valid information than other types of scales (Cicchetti et al., 2006 ).

For the qualitative data, we analyzed the students’ responses in the open-ended questions and the transcribed FGD using the predetermined categories in the conceptual framework. Specifically, we used multilevel coding in classifying the codes from the transcripts (Birks & Mills, 2011 ). To do this, we identified the relevant codes from the responses of the participants and categorized these codes based on the similarities or relatedness of their properties and dimensions. Then, we performed a constant comparative and progressive analysis of cases to allow the initially identified subcategories to emerge and take shape. To ensure the reliability of the analysis, two coders independently analyzed the qualitative data. Both coders familiarize themselves with the purpose, research questions, research method, and codes and coding scheme of the study. They also had a calibration session and discussed ways on how they could consistently analyze the qualitative data. Percent of agreement between the two coders was 86 percent. Any disagreements in the analysis were discussed by the coders until an agreement was achieved.

This study investigated students’ online learning experience in higher education within the context of the pandemic. Specifically, we identified the extent of challenges that students experienced, how the COVID-19 pandemic impacted their online learning experience, and the strategies that they used to confront these challenges.

The extent of students’ online learning challenges

Table ​ Table2 2 presents the mean scores and SD for the extent of challenges that students’ experienced during online learning. Overall, the students experienced the identified challenges to a moderate extent ( x ̅  = 2.62, SD  = 1.03) with scores ranging from x ̅  = 1.72 ( to some extent ) to x ̅  = 3.58 ( to a great extent ). More specifically, the greatest challenge that students experienced was related to the learning environment ( x ̅  = 3.49, SD  = 1.27), particularly on distractions at home, limitations in completing the requirements for certain subjects, and difficulties in selecting the learning areas and study schedule. It is, however, found that the least challenge was on technological literacy and competency ( x ̅  = 2.10, SD  = 1.13), particularly on knowledge and training in the use of technology, technological intimidation, and resistance to learning technologies. Other areas that students experienced the least challenge are Internet access under TSC and procrastination under SRC. Nonetheless, nearly half of the students’ responses per indicator rated the challenges they experienced as moderate (14 of the 37 indicators), particularly in TCC ( x ̅  = 2.51, SD  = 1.31), SIC ( x ̅  = 2.77, SD  = 1.34), and LRC ( x ̅  = 2.93, SD  = 1.31).

The Extent of Students’ Challenges during the Interim Online Learning

Out of 200 students, 181 responded to the question about other challenges that they experienced. Most of their responses were already covered by the seven predetermined categories, except for 18 responses related to physical discomfort ( N  = 5) and financial challenges ( N  = 13). For instance, S108 commented that “when it comes to eyes and head, my eyes and head get ache if the session of class was 3 h straight in front of my gadget.” In the same vein, S194 reported that “the long exposure to gadgets especially laptop, resulting in body pain & headaches.” With reference to physical financial challenges, S66 noted that “not all the time I have money to load”, while S121 claimed that “I don't know until when are we going to afford budgeting our money instead of buying essentials.”

Impact of the pandemic on students’ online learning challenges

Another objective of this study was to identify how COVID-19 influenced the online learning challenges that students experienced. As shown in Table ​ Table3, 3 , most of the students’ responses were related to teaching and learning quality ( N  = 86) and anxiety and other mental health issues ( N  = 52). Regarding the adverse impact on teaching and learning quality, most of the comments relate to the lack of preparation for the transition to online platforms (e.g., S23, S64), limited infrastructure (e.g., S13, S65, S99, S117), and poor Internet service (e.g., S3, S9, S17, S41, S65, S99). For the anxiety and mental health issues, most students reported that the anxiety, boredom, sadness, and isolation they experienced had adversely impacted the way they learn (e.g., S11, S130), completing their tasks/activities (e.g., S56, S156), and their motivation to continue studying (e.g., S122, S192). The data also reveal that COVID-19 aggravated the financial difficulties experienced by some students ( N  = 16), consequently affecting their online learning experience. This financial impact mainly revolved around the lack of funding for their online classes as a result of their parents’ unemployment and the high cost of Internet data (e.g., S18, S113, S167). Meanwhile, few concerns were raised in relation to COVID-19’s impact on mobility ( N  = 7) and face-to-face interactions ( N  = 7). For instance, some commented that the lack of face-to-face interaction with her classmates had a detrimental effect on her learning (S46) and socialization skills (S36), while others reported that restrictions in mobility limited their learning experience (S78, S110). Very few comments were related to no effect ( N  = 4) and positive effect ( N  = 2). The above findings suggest the pandemic had additive adverse effects on students’ online learning experience.

Summary of students’ responses on the impact of COVID-19 on their online learning experience

Students’ strategies to overcome challenges in an online learning environment

The third objective of this study is to identify the strategies that students employed to overcome the different online learning challenges they experienced. Table ​ Table4 4 presents that the most commonly used strategies used by students were resource management and utilization ( N  = 181), help-seeking ( N  = 155), technical aptitude enhancement ( N  = 122), time management ( N  = 98), and learning environment control ( N  = 73). Not surprisingly, the top two strategies were also the most consistently used across different challenges. However, looking closely at each of the seven challenges, the frequency of using a particular strategy varies. For TSC and LRC, the most frequently used strategy was resource management and utilization ( N  = 52, N  = 89, respectively), whereas technical aptitude enhancement was the students’ most preferred strategy to address TLCC ( N  = 77) and TCC ( N  = 38). In the case of SRC, SIC, and LEC, the most frequently employed strategies were time management ( N  = 71), psychological support ( N  = 53), and learning environment control ( N  = 60). In terms of consistency, help-seeking appears to be the most consistent across the different challenges in an online learning environment. Table ​ Table4 4 further reveals that strategies used by students within a specific type of challenge vary.

Students’ Strategies to Overcome Online Learning Challenges

Discussion and conclusions

The current study explores the challenges that students experienced in an online learning environment and how the pandemic impacted their online learning experience. The findings revealed that the online learning challenges of students varied in terms of type and extent. Their greatest challenge was linked to their learning environment at home, while their least challenge was technological literacy and competency. Based on the students’ responses, their challenges were also found to be aggravated by the pandemic, especially in terms of quality of learning experience, mental health, finances, interaction, and mobility. With reference to previous studies (i.e., Adarkwah, 2021 ; Copeland et al., 2021 ; Day et al., 2021 ; Fawaz et al., 2021 ; Kapasia et al., 2020 ; Khalil et al., 2020 ; Singh et al., 2020 ), the current study has complemented their findings on the pedagogical, logistical, socioeconomic, technological, and psychosocial online learning challenges that students experience within the context of the COVID-19 pandemic. Further, this study extended previous studies and our understanding of students’ online learning experience by identifying both the presence and extent of online learning challenges and by shedding light on the specific strategies they employed to overcome them.

Overall findings indicate that the extent of challenges and strategies varied from one student to another. Hence, they should be viewed as a consequence of interaction several many factors. Students’ responses suggest that their online learning challenges and strategies were mediated by the resources available to them, their interaction with their teachers and peers, and the school’s existing policies and guidelines for online learning. In the context of the pandemic, the imposed lockdowns and students’ socioeconomic condition aggravated the challenges that students experience.

While most studies revealed that technology use and competency were the most common challenges that students face during the online classes (see Rasheed et al., 2020 ), the case is a bit different in developing countries in times of pandemic. As the findings have shown, the learning environment is the greatest challenge that students needed to hurdle, particularly distractions at home (e.g., noise) and limitations in learning space and facilities. This data suggests that online learning challenges during the pandemic somehow vary from the typical challenges that students experience in a pre-pandemic online learning environment. One possible explanation for this result is that restriction in mobility may have aggravated this challenge since they could not go to the school or other learning spaces beyond the vicinity of their respective houses. As shown in the data, the imposition of lockdown restricted students’ learning experience (e.g., internship and laboratory experiments), limited their interaction with peers and teachers, caused depression, stress, and anxiety among students, and depleted the financial resources of those who belong to lower-income group. All of these adversely impacted students’ learning experience. This finding complemented earlier reports on the adverse impact of lockdown on students’ learning experience and the challenges posed by the home learning environment (e.g., Day et al., 2021 ; Kapasia et al., 2020 ). Nonetheless, further studies are required to validate the impact of restrictions on mobility on students’ online learning experience. The second reason that may explain the findings relates to students’ socioeconomic profile. Consistent with the findings of Adarkwah ( 2021 ) and Day et al. ( 2021 ), the current study reveals that the pandemic somehow exposed the many inequities in the educational systems within and across countries. In the case of a developing country, families from lower socioeconomic strata (as in the case of the students in this study) have limited learning space at home, access to quality Internet service, and online learning resources. This is the reason the learning environment and learning resources recorded the highest level of challenges. The socioeconomic profile of the students (i.e., low and middle-income group) is the same reason financial problems frequently surfaced from their responses. These students frequently linked the lack of financial resources to their access to the Internet, educational materials, and equipment necessary for online learning. Therefore, caution should be made when interpreting and extending the findings of this study to other contexts, particularly those from higher socioeconomic strata.

Among all the different online learning challenges, the students experienced the least challenge on technological literacy and competency. This is not surprising considering a plethora of research confirming Gen Z students’ (born since 1996) high technological and digital literacy (Barrot, 2018 ; Ng, 2012 ; Roblek et al., 2019 ). Regarding the impact of COVID-19 on students’ online learning experience, the findings reveal that teaching and learning quality and students’ mental health were the most affected. The anxiety that students experienced does not only come from the threats of COVID-19 itself but also from social and physical restrictions, unfamiliarity with new learning platforms, technical issues, and concerns about financial resources. These findings are consistent with that of Copeland et al. ( 2021 ) and Fawaz et al. ( 2021 ), who reported the adverse effects of the pandemic on students’ mental and emotional well-being. This data highlights the need to provide serious attention to the mediating effects of mental health, restrictions in mobility, and preparedness in delivering online learning.

Nonetheless, students employed a variety of strategies to overcome the challenges they faced during online learning. For instance, to address the home learning environment problems, students talked to their family (e.g., S12, S24), transferred to a quieter place (e.g., S7, S 26), studied at late night where all family members are sleeping already (e.g., S51), and consulted with their classmates and teachers (e.g., S3, S9, S156, S193). To overcome the challenges in learning resources, students used the Internet (e.g., S20, S27, S54, S91), joined Facebook groups that share free resources (e.g., S5), asked help from family members (e.g., S16), used resources available at home (e.g., S32), and consulted with the teachers (e.g., S124). The varying strategies of students confirmed earlier reports on the active orientation that students take when faced with academic- and non-academic-related issues in an online learning space (see Fawaz et al., 2021 ). The specific strategies that each student adopted may have been shaped by different factors surrounding him/her, such as available resources, student personality, family structure, relationship with peers and teacher, and aptitude. To expand this study, researchers may further investigate this area and explore how and why different factors shape their use of certain strategies.

Several implications can be drawn from the findings of this study. First, this study highlighted the importance of emergency response capability and readiness of higher education institutions in case another crisis strikes again. Critical areas that need utmost attention include (but not limited to) national and institutional policies, protocol and guidelines, technological infrastructure and resources, instructional delivery, staff development, potential inequalities, and collaboration among key stakeholders (i.e., parents, students, teachers, school leaders, industry, government education agencies, and community). Second, the findings have expanded our understanding of the different challenges that students might confront when we abruptly shift to full online learning, particularly those from countries with limited resources, poor Internet infrastructure, and poor home learning environment. Schools with a similar learning context could use the findings of this study in developing and enhancing their respective learning continuity plans to mitigate the adverse impact of the pandemic. This study would also provide students relevant information needed to reflect on the possible strategies that they may employ to overcome the challenges. These are critical information necessary for effective policymaking, decision-making, and future implementation of online learning. Third, teachers may find the results useful in providing proper interventions to address the reported challenges, particularly in the most critical areas. Finally, the findings provided us a nuanced understanding of the interdependence of learning tools, learners, and learning outcomes within an online learning environment; thus, giving us a multiperspective of hows and whys of a successful migration to full online learning.

Some limitations in this study need to be acknowledged and addressed in future studies. One limitation of this study is that it exclusively focused on students’ perspectives. Future studies may widen the sample by including all other actors taking part in the teaching–learning process. Researchers may go deeper by investigating teachers’ views and experience to have a complete view of the situation and how different elements interact between them or affect the others. Future studies may also identify some teacher-related factors that could influence students’ online learning experience. In the case of students, their age, sex, and degree programs may be examined in relation to the specific challenges and strategies they experience. Although the study involved a relatively large sample size, the participants were limited to college students from a Philippine university. To increase the robustness of the findings, future studies may expand the learning context to K-12 and several higher education institutions from different geographical regions. As a final note, this pandemic has undoubtedly reshaped and pushed the education system to its limits. However, this unprecedented event is the same thing that will make the education system stronger and survive future threats.

Authors’ contributions

Jessie Barrot led the planning, prepared the instrument, wrote the report, and processed and analyzed data. Ian Llenares participated in the planning, fielded the instrument, processed and analyzed data, reviewed the instrument, and contributed to report writing. Leo del Rosario participated in the planning, fielded the instrument, processed and analyzed data, reviewed the instrument, and contributed to report writing.

No funding was received in the conduct of this study.

Availability of data and materials

Declarations.

The study has undergone appropriate ethics protocol.

Informed consent was sought from the participants.

Authors consented the publication. Participants consented to publication as long as confidentiality is observed.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Adarkwah MA. “I’m not against online teaching, but what about us?”: ICT in Ghana post Covid-19. Education and Information Technologies. 2021; 26 (2):1665–1685. doi: 10.1007/s10639-020-10331-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Almaiah MA, Al-Khasawneh A, Althunibat A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Education and Information Technologies. 2020; 25 :5261–5280. doi: 10.1007/s10639-020-10219-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Araujo T, Wonneberger A, Neijens P, de Vreese C. How much time do you spend online? Understanding and improving the accuracy of self-reported measures of Internet use. Communication Methods and Measures. 2017; 11 (3):173–190. doi: 10.1080/19312458.2017.1317337. [ CrossRef ] [ Google Scholar ]
  • Barrot, J. S. (2016). Using Facebook-based e-portfolio in ESL writing classrooms: Impact and challenges. Language, Culture and Curriculum, 29 (3), 286–301.
  • Barrot, J. S. (2018). Facebook as a learning environment for language teaching and learning: A critical analysis of the literature from 2010 to 2017. Journal of Computer Assisted Learning, 34 (6), 863–875.
  • Barrot, J. S. (2020). Scientific mapping of social media in education: A decade of exponential growth. Journal of Educational Computing Research . 10.1177/0735633120972010.
  • Barrot, J. S. (2021). Social media as a language learning environment: A systematic review of the literature (2008–2019). Computer Assisted Language Learning . 10.1080/09588221.2021.1883673.
  • Bergen N, Labonté R. “Everything is perfect, and we have no problems”: Detecting and limiting social desirability bias in qualitative research. Qualitative Health Research. 2020; 30 (5):783–792. doi: 10.1177/1049732319889354. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Birks, M., & Mills, J. (2011). Grounded theory: A practical guide . Sage.
  • Boelens R, De Wever B, Voet M. Four key challenges to the design of blended learning: A systematic literature review. Educational Research Review. 2017; 22 :1–18. doi: 10.1016/j.edurev.2017.06.001. [ CrossRef ] [ Google Scholar ]
  • Buehler MA. Where is the library in course management software? Journal of Library Administration. 2004; 41 (1–2):75–84. doi: 10.1300/J111v41n01_07. [ CrossRef ] [ Google Scholar ]
  • Carter RA, Jr, Rice M, Yang S, Jackson HA. Self-regulated learning in online learning environments: Strategies for remote learning. Information and Learning Sciences. 2020; 121 (5/6):321–329. doi: 10.1108/ILS-04-2020-0114. [ CrossRef ] [ Google Scholar ]
  • Cavanaugh CS, Barbour MK, Clark T. Research and practice in K-12 online learning: A review of open access literature. The International Review of Research in Open and Distributed Learning. 2009; 10 (1):1–22. doi: 10.19173/irrodl.v10i1.607. [ CrossRef ] [ Google Scholar ]
  • Cicchetti D, Bronen R, Spencer S, Haut S, Berg A, Oliver P, Tyrer P. Rating scales, scales of measurement, issues of reliability: Resolving some critical issues for clinicians and researchers. The Journal of Nervous and Mental Disease. 2006; 194 (8):557–564. doi: 10.1097/01.nmd.0000230392.83607.c5. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Copeland WE, McGinnis E, Bai Y, Adams Z, Nardone H, Devadanam V, Hudziak JJ. Impact of COVID-19 pandemic on college student mental health and wellness. Journal of the American Academy of Child & Adolescent Psychiatry. 2021; 60 (1):134–141. doi: 10.1016/j.jaac.2020.08.466. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Day T, Chang ICC, Chung CKL, Doolittle WE, Housel J, McDaniel PN. The immediate impact of COVID-19 on postsecondary teaching and learning. The Professional Geographer. 2021; 73 (1):1–13. doi: 10.1080/00330124.2020.1823864. [ CrossRef ] [ Google Scholar ]
  • Donitsa-Schmidt S, Ramot R. Opportunities and challenges: Teacher education in Israel in the Covid-19 pandemic. Journal of Education for Teaching. 2020; 46 (4):586–595. doi: 10.1080/02607476.2020.1799708. [ CrossRef ] [ Google Scholar ]
  • Drane, C., Vernon, L., & O’Shea, S. (2020). The impact of ‘learning at home’on the educational outcomes of vulnerable children in Australia during the COVID-19 pandemic. Literature Review Prepared by the National Centre for Student Equity in Higher Education. Curtin University, Australia.
  • Elaish M, Shuib L, Ghani N, Yadegaridehkordi E. Mobile English language learning (MELL): A literature review. Educational Review. 2019; 71 (2):257–276. doi: 10.1080/00131911.2017.1382445. [ CrossRef ] [ Google Scholar ]
  • Fawaz, M., Al Nakhal, M., & Itani, M. (2021). COVID-19 quarantine stressors and management among Lebanese students: A qualitative study.  Current Psychology , 1–8. [ PMC free article ] [ PubMed ]
  • Franchi T. The impact of the Covid-19 pandemic on current anatomy education and future careers: A student’s perspective. Anatomical Sciences Education. 2020; 13 (3):312–315. doi: 10.1002/ase.1966. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garcia R, Falkner K, Vivian R. Systematic literature review: Self-regulated learning strategies using e-learning tools for computer science. Computers & Education. 2018; 123 :150–163. doi: 10.1016/j.compedu.2018.05.006. [ CrossRef ] [ Google Scholar ]
  • Gonzalez T, De La Rubia MA, Hincz KP, Comas-Lopez M, Subirats L, Fort S, Sacha GM. Influence of COVID-19 confinement on students’ performance in higher education. PLoS ONE. 2020; 15 (10):e0239490. doi: 10.1371/journal.pone.0239490. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hew KF, Jia C, Gonda DE, Bai S. Transitioning to the “new normal” of learning in unpredictable times: Pedagogical practices and learning performance in fully online flipped classrooms. International Journal of Educational Technology in Higher Education. 2020; 17 (1):1–22. doi: 10.1186/s41239-020-00234-x. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Huang Q. Comparing teacher’s roles of F2F learning and online learning in a blended English course. Computer Assisted Language Learning. 2019; 32 (3):190–209. doi: 10.1080/09588221.2018.1540434. [ CrossRef ] [ Google Scholar ]
  • John Hopkins University. (2021). Global map . https://coronavirus.jhu.edu/
  • Kapasia N, Paul P, Roy A, Saha J, Zaveri A, Mallick R, Chouhan P. Impact of lockdown on learning status of undergraduate and postgraduate students during COVID-19 pandemic in West Bengal. India. Children and Youth Services Review. 2020; 116 :105194. doi: 10.1016/j.childyouth.2020.105194. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kebritchi M, Lipschuetz A, Santiague L. Issues and challenges for teaching successful online courses in higher education: A literature review. Journal of Educational Technology Systems. 2017; 46 (1):4–29. doi: 10.1177/0047239516661713. [ CrossRef ] [ Google Scholar ]
  • Khalil R, Mansour AE, Fadda WA, Almisnid K, Aldamegh M, Al-Nafeesah A, Al-Wutayd O. The sudden transition to synchronized online learning during the COVID-19 pandemic in Saudi Arabia: A qualitative study exploring medical students’ perspectives. BMC Medical Education. 2020; 20 (1):1–10. doi: 10.1186/s12909-020-02208-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Matsumoto K. Introspection, verbal reports and second language learning strategy research. Canadian Modern Language Review. 1994; 50 (2):363–386. doi: 10.3138/cmlr.50.2.363. [ CrossRef ] [ Google Scholar ]
  • Ng W. Can we teach digital natives digital literacy? Computers & Education. 2012; 59 (3):1065–1078. doi: 10.1016/j.compedu.2012.04.016. [ CrossRef ] [ Google Scholar ]
  • Pham T, Nguyen H. COVID-19: Challenges and opportunities for Vietnamese higher education. Higher Education in Southeast Asia and beyond. 2020; 8 :22–24. [ Google Scholar ]
  • Rasheed RA, Kamsin A, Abdullah NA. Challenges in the online component of blended learning: A systematic review. Computers & Education. 2020; 144 :103701. doi: 10.1016/j.compedu.2019.103701. [ CrossRef ] [ Google Scholar ]
  • Recker MM, Dorward J, Nelson LM. Discovery and use of online learning resources: Case study findings. Educational Technology & Society. 2004; 7 (2):93–104. [ Google Scholar ]
  • Roblek V, Mesko M, Dimovski V, Peterlin J. Smart technologies as social innovation and complex social issues of the Z generation. Kybernetes. 2019; 48 (1):91–107. doi: 10.1108/K-09-2017-0356. [ CrossRef ] [ Google Scholar ]
  • Seplaki CL, Agree EM, Weiss CO, Szanton SL, Bandeen-Roche K, Fried LP. Assistive devices in context: Cross-sectional association between challenges in the home environment and use of assistive devices for mobility. The Gerontologist. 2014; 54 (4):651–660. doi: 10.1093/geront/gnt030. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Simbulan N. COVID-19 and its impact on higher education in the Philippines. Higher Education in Southeast Asia and beyond. 2020; 8 :15–18. [ Google Scholar ]
  • Singh K, Srivastav S, Bhardwaj A, Dixit A, Misra S. Medical education during the COVID-19 pandemic: a single institution experience. Indian Pediatrics. 2020; 57 (7):678–679. doi: 10.1007/s13312-020-1899-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Singh V, Thurman A. How many ways can we define online learning? A systematic literature review of definitions of online learning (1988–2018) American Journal of Distance Education. 2019; 33 (4):289–306. doi: 10.1080/08923647.2019.1663082. [ CrossRef ] [ Google Scholar ]
  • Spector P. Using self-report questionnaires in OB research: A comment on the use of a controversial method. Journal of Organizational Behavior. 1994; 15 (5):385–392. doi: 10.1002/job.4030150503. [ CrossRef ] [ Google Scholar ]
  • Suryaman M, Cahyono Y, Muliansyah D, Bustani O, Suryani P, Fahlevi M, Munthe AP. COVID-19 pandemic and home online learning system: Does it affect the quality of pharmacy school learning? Systematic Reviews in Pharmacy. 2020; 11 :524–530. [ Google Scholar ]
  • Tallent-Runnels MK, Thomas JA, Lan WY, Cooper S, Ahern TC, Shaw SM, Liu X. Teaching courses online: A review of the research. Review of Educational Research. 2006; 76 (1):93–135. doi: 10.3102/00346543076001093. [ CrossRef ] [ Google Scholar ]
  • Tang, T., Abuhmaid, A. M., Olaimat, M., Oudat, D. M., Aldhaeebi, M., & Bamanger, E. (2020). Efficiency of flipped classroom with online-based teaching under COVID-19.  Interactive Learning Environments , 1–12.
  • Usher M, Barak M. Team diversity as a predictor of innovation in team projects of face-to-face and online learners. Computers & Education. 2020; 144 :103702. doi: 10.1016/j.compedu.2019.103702. [ CrossRef ] [ Google Scholar ]
  • Varea, V., & González-Calvo, G. (2020). Touchless classes and absent bodies: Teaching physical education in times of Covid-19.  Sport, Education and Society , 1–15.
  • Wallace RM. Online learning in higher education: A review of research on interactions among teachers and students. Education, Communication & Information. 2003; 3 (2):241–280. doi: 10.1080/14636310303143. [ CrossRef ] [ Google Scholar ]
  • World Health Organization (2020). Coronavirus . https://www.who.int/health-topics/coronavirus#tab=tab_1
  • Xue, E., Li, J., Li, T., & Shang, W. (2020). China’s education response to COVID-19: A perspective of policy analysis.  Educational Philosophy and Theory , 1–13.

Help | Advanced Search

Mathematics > Numerical Analysis

Title: a modular deep learning-based approach for diffuse optical tomography reconstruction.

Abstract: Medical imaging is nowadays a pillar in diagnostics and therapeutic follow-up. Current research tries to integrate established - but ionizing - tomographic techniques with technologies offering reduced radiation exposure. Diffuse Optical Tomography (DOT) uses non-ionizing light in the Near-Infrared (NIR) window to reconstruct optical coefficients in living beings, providing functional indications about the composition of the investigated organ/tissue. Due to predominant light scattering at NIR wavelengths, DOT reconstruction is, however, a severely ill-conditioned inverse problem. Conventional reconstruction approaches show severe weaknesses when dealing also with mildly complex cases and/or are computationally very intensive. In this work we explore deep learning techniques for DOT inversion. Namely, we propose a fully data-driven approach based on a modularity concept: first data and originating signal are separately processed via autoencoders, then the corresponding low-dimensional latent spaces are connected via a bridging network which acts at the same time as a learned regularizer.

Submission history

Access paper:.

  • Download PDF
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

COMMENTS

  1. (PDF) Modular Distance Learning: Its Effect in the ...

    Mixed method was applied in this study; Quantitative using T-Test to compare the GWA of learners and Qualitative through the use of semi-structured interview to find out the perceived effect of MDL...

  2. Online and face‐to‐face learning: Evidence from students' performance

    1. INTRODUCTION The Covid‐19 pandemic has been a wake‐up call to many countries regarding their capacity to cater for mass online education. This situation has been further complicated in developing countries, such as South Africa, who lack the digital infrastructure for the majority of the population.

  3. Modular Distance Learning in the New Normal Education Amidst Covid-19

    Modular Distance Learning is the use of Modules made by teachers with different tasks and learning activities based from the essential learning competencies. Content uploaded by Geraldine...

  4. Insights Into Students' Experiences and Perceptions of Remote Learning

    The COVID-19 pandemic has dramatically changed the demographics of online students. Previously, almost all students engaged in online learning elected the online format, starting with individual online courses in the mid-1990s through today's robust online degree and certificate programs.

  5. Learner satisfaction, engagement and performances in an online module

    There has been debates related to online and blended learning from a perspective of learner experiences in terms of student satisfaction, engagement and performances. In this paper, we analyze student feedback and report the findings of a study of the relationships between student satisfaction and their engagement in an online course with their overall performances. The module was offered ...

  6. Integrating students' perspectives about online learning: a hierarchy

    This article reports on a large-scale (n = 987), exploratory factor analysis study incorporating various concepts identified in the literature as critical success factors for online learning from the students' perspective, and then determines their hierarchical significance. Seven factors--Basic Online Modality, Instructional Support, Teaching Presence, Cognitive Presence, Online Social ...

  7. PDF Understanding Modular Learning

    The intent of this paper is to develop a greater understanding of the concept of modular learning as it applies to an online university seeking to improve and expand the learning process, and also to provide take-away lessons that can be applied in other change of initiatives.

  8. Distance learning in higher education during COVID-19: The role of

    Due to the COVID-19 pandemic, higher educational institutions worldwide switched to emergency distance learning in early 2020. The less structured environment of distance learning forced students to regulate their learning and motivation more independently. According to self-determination theory (SDT), satisfaction of the three basic psychological needs for autonomy, competence and social ...

  9. A Survey on the Effectiveness of Online Teaching-Learning Methods for

    Online teaching-learning methods have been followed by world-class universities for more than a decade to cater to the needs of students who stay far away from universities/colleges. But during the COVID-19 pandemic period, online teaching-learning helped almost all universities, colleges, and affiliated students. An attempt is made to find the effectiveness of online teaching-learning ...

  10. Students' perceptions on distance education: A multinational study

    Although there are different types of DE, this research focuses on online learning. The following types of online learning will be investigated: synchronous, asynchronous, blended, massive online open courses (MOOC), and open schedule online courses.

  11. The effects of online education on academic success: A meta ...

    Furthermore, online learning is described as a way of utilizing the internet to obtain the related learning sources during the learning process, to interact with the content, the teacher, and other learners, as well as to get support throughout the learning process (Ally, 2004 ).

  12. (PDF) Modular distance learning modality: Challenges of teachers in

    Modular distance learning modality: Challenges of teachers in teaching amid the Covid-19 pandemic International Journal of Research Studies in Education 10 (8) Authors: Felicisimo Castroverde...

  13. PDF Learning at home: Parents' lived experiences on distance learning

    International Journal of Evaluation and Research in Education (IJERE) Vol. 10, No. 3, September 2021, pp. 901~911 ... access to technology necessary for online learning. Modular learning addresses this learning inequality by providing more inclusive access to education. This study explored the lived experiences of the parents who act

  14. Students' experience of online learning during the COVID‐19 pandemic: A

    Even though online learning research has been advancing in uncovering student experiences in various settings (i.e., tertiary, adult, and professional education), very little progress has been achieved in understanding the experience of the K‐12 student population, especially when narrowed down to different school‐year segments (i.e., primary an...

  15. The Challenges of Modular Learning in the Wake of COVID-19: A Digital

    The coronavirus pandemic (COVID-19) is a global health crisis that has affected educational systems worldwide. North Eastern Mindanao State University (NEMSU), a typical countryside academic institution in the Southern Philippines, did not escape this dilemma. The advent of remote learning to continue the students' learning process has caused difficulties for both the students and the ...

  16. The Effectiveness of Modular Distance Learning Modality to the Academic

    Modular learning is a form of distance learning that uses Self-Learning Modules (SLM) and is highly convenient for most typical Filipino students. It was also the most preferred learning system of the majority of parents/guardians for their children.

  17. Blended learning effectiveness: the relationship between student

    Research design. This research applies a quantitative design where descriptive statistics are used for the student characteristics and design features data, t-tests for the age and gender variables to determine if they are significant in blended learning effectiveness and regression for predictors of blended learning effectiveness.

  18. The effectiveness of blended learning on students ...

    1. Introduction. In the context of the rapidly developing scientific and technical revolution, the education and training sector has actively implemented tasks and solutions to enhance support management, teaching, learning, assessment, scientific research, and the application of information and communication technology (ICT) (Acosta et al., 2018; Baris, 2015; Bray and Tangney, 2017; Diabat ...

  19. Traditional Learning Compared to Online Learning During the COVID-19

    It was found that online learning provides easily accessible learning materials, saving time, effort, and money, improving technical and self-learning skills, taking the necessary safety measures and precautions, interaction without timidness, and getting higher academic grades (Al Zahrani et al., 2021).

  20. PDF Students' Perceptions towards the Quality of Online Education: A

    Ascough (2002) suggested that online education has the following features: (a) it provides a learning experience different than in the traditional classroom because learners are different, (b) the communication is via computer and World Wide Web, (c) participation in classroom by learners are different, (d) the social dynamic of the learning e...

  21. Students' online learning challenges during the pandemic and how they

    Introduction Since the 1990s, the world has seen significant changes in the landscape of education as a result of the ever-expanding influence of technology. One such development is the adoption of online learning across different learning contexts, whether formal or informal, academic and non-academic, and residential or remotely.

  22. PDF Perception of the Students and Teachers on the Effectiveness of Modular

    Modular Distance Learning. Distance learning, often known as correspondence education or home study, is a type of education in which students and teachers have little or no face-to-face interaction.[6]. It also refers to the process of teaching and learning that takes place outside the traditional classroom.

  23. [2302.11529] Modular Deep Learning

    Modular deep learning has emerged as a promising solution to these challenges. In this framework, units of computation are often implemented as autonomous parameter-efficient modules. Information is conditionally routed to a subset of modules and subsequently aggregated. These properties enable positive transfer and systematic generalisation by ...

  24. A Modular Deep Learning-based Approach for Diffuse Optical Tomography

    Download a PDF of the paper titled A Modular Deep Learning-based Approach for Diffuse Optical Tomography Reconstruction, by Alessandro Benfenati and 2 other authors. Download PDF Abstract: Medical imaging is nowadays a pillar in diagnostics and therapeutic follow-up. Current research tries to integrate established - but ionizing - tomographic ...